Using Sensors: LIDAR

Learning Objectives

This tutorial introduces how to use a LIDAR for sensing an environment in Omniverse Isaac Sim. After this tutorial, you will know how to add a LIDAR sensor to the scene, activate, and detect objects in the simulation.

10-15 Minute Tutorial

Getting Started

Prerequisites

This tutorial demonstrates how to integrate LIDAR sensors into an Omniverse Isaac Sim simulations. It begins by showing how to add LIDARs to an environment using the User Interface. It then details how to leverage the LIDAR Python API for more advanced control, segmentation, and processing. The simulated LIDAR works by combining Ray Casting and Physics Collisions to report the distance to detected objects in the environment. Let’s begin setting up the scene by creating a PhysicsScene and a LIDAR in the environment:

  1. To create a Physics Scene, go to the top Menu Bar and Click Create > Physics > Physics Scene. There should now be a PhysicsScene Prim in the Stage panel on the right.

  2. To create a LIDAR, go to the top Menu Bar and Click Create > Isaac > Sensors > LIDAR > Rotating. Next, let’s set some of the LIDAR properties for rotation and visualization:

  3. Select the newly created LIDAR prim from the Stage panel.

  4. Once selected, the Property panel to the bottom left will populate with all the available properties of the LIDAR.

  5. Scroll down in the Property panel to the Raw USD Properties section.

  6. Enable the drawLines checkbox to enable line rendering.

  7. Set the revolutions per second to 1 Hz by setting rotationRate to 1.0.

    • To fire LIDAR rays in all directions at once, set the rotationRate to 0.0.

Note

You can update all of the lidar parameters on the fly while the stage is running. When the rotation rate reaches zero or less, the lidar prim will cast rays in all directions based on your FOV and resolution.

Setup Collision Detection

The LIDAR can only detect objects with Collisions Enabled. Let’s add an object for the LIDAR to detect:

  1. Go to the top Menu Bar and Click Create > Mesh > Cube.

  2. Scale the Cube to be (.01, .01, .01).

  3. Move the Cube to the position (2, 0, 0).

Next, add a Physics Collider to the Cube:

  1. With the Cube selected, go to the Property panel and click the + Add button.

  2. Select + Add > Physics > Collider.

  • Use the mouse and move the Cube around the scene to see how the LIDAR rays interact with the geometry.

Attach a LIDAR to Geometry

For most use cases, LIDARs will be attached to other, more complex assemblies — such as cars or robots. Let’s learn how to attach a LIDAR to other parent geometry. We are going to use a Cylinder as a placeholder for a more complex prim. Add a Cylinder to the scene and nest the LIDAR prim under it:

  1. Right click in the viewport and select Create > Mesh > Cylinder.

  2. Set the position of the Cylinder to (0, 0, 0).

  3. Set the scale of the Cylinder to (0.01, 0.01, 0.01).

  4. In the Stage panel, drag-and-drop the LIDAR prim onto the Cylinder.

  5. This makes the Cylinder the parent of the LIDAR. Now when the Cylinder moves, the LIDAR moves with it. Moreover, all information reported by the LIDAR is now relative to the Cylinder. Add a offset to LIDAR to precisely position it relative to the Cylinder:

  6. Select the LIDAR prim from the Stage and move it to (.5, .5, 0).

  7. Now move the Cylinder around the environment. The LIDAR maintains this relative transform.

  8. Re-select the LIDAR prim and reset its Translate value to its default setting (0, 0, 0).

Attach a LIDAR to a Moving Robot

Similarly, you can attach a LIDAR prim to a robot. For simplicity in creating a moving robot the Carter URDF import example is used.

  1. In the Carter URDF import example press LOAD, CONFIGURE and MOVE

  2. Press play and the Carter robot should drive forward automatically.

  3. Create a LIDAR, go to the top Menu Bar and Click Create > Isaac > Sensors > LIDAR > Rotating. The LIDAR prim will be created as a child of the selected prim.

  4. In the Stage panel, select your LIDAR prim and drag it onto /carter/chassis_link

  5. Enable draw lines and set the rotation rate to zero for easier debugging

  6. Move the LIDAR prim vertically so it is located at the correct height relative to the center of the robot.

Use the Python API

The LIDAR Python API is used to interact programmatically with a LIDAR through scripts and extensions. It can be used to create, control, and query the sensor through scripts and extensions. Let’s use the Script Editor and Python API to retrieve the data from the LIDAR’s last sweep:

  1. Go to the top menu bar and Click Window > Script Editor to open the Script Editor Window.

  2. Add the necessary imports:

1import omni                                                     # Provides the core omniverse apis
2import asyncio                                                  # Used to run sample asynchronously to not block rendering thread
3from omni.isaac.range_sensor import _range_sensor               # Imports the python bindings to interact with lidar sensor
4from pxr import UsdGeom, Gf, UsdPhysics                         # pxr usd imports used to create the cube
  1. Grab the Stage, Simulation Timeline, and LIDAR Interface:

 1stage = omni.usd.get_context().get_stage()                      # Used to access Geometry
 2timeline = omni.timeline.get_timeline_interface()               # Used to interact with simulation
 3lidarInterface = _range_sensor.acquire_lidar_sensor_interface() # Used to interact with the LIDAR
 4
 5# These commands are the Python-equivalent of the first half of this tutorial
 6omni.kit.commands.execute('AddPhysicsSceneCommand',stage = stage, path='/World/PhysicsScene')
 7lidarPath = "/LidarName"
 8result, prim = omni.kit.commands.execute(
 9            "RangeSensorCreateLidar",
10            path=lidarPath,
11            parent="/World",
12            min_range=0.4,
13            max_range=100.0,
14            draw_points=False,
15            draw_lines=True,
16            horizontal_fov=360.0,
17            vertical_fov=30.0,
18            horizontal_resolution=0.4,
19            vertical_resolution=4.0,
20            rotation_rate=0.0,
21            high_lod=False,
22            yaw_offset=0.0,
23            enable_semantics=False
24        )
  1. Create an obstacle for the LIDAR:

1CubePath = "/World/CubeName"                                    # Create a Cube
2cubeGeom = UsdGeom.Cube.Define(stage, CubePath)
3cubePrim = stage.GetPrimAtPath(CubePath)
4cubeGeom.AddTranslateOp().Set(Gf.Vec3f(2.0, 0.0, 0.0))        # Move it away from the LIDAR
5cubeGeom.CreateSizeAttr(1)                                    # Scale it appropriately
6collisionAPI = UsdPhysics.CollisionAPI.Apply(cubePrim)          # Add a Physics Collider to it
  1. Get the LIDAR data:

The lidar needs a frame of simulation in order to get data for the first frame, so we will start the simulation by calling timeline.play and waiting for a frame to complete, and then pause simulation using timeline.pause() to populate the depth buffers in the lidar. Because the simulation is running asynchronously with our script, we use asyncio and ensure_future to wait for our script to complete calling timeline.pause() is optional, data from the sensor can be gathered anytime while simulating.

 1async def get_lidar_param():                                    # Function to retrieve data from the LIDAR
 2    await omni.kit.app.get_app().next_update_async()            # wait one frame for data
 3    timeline.pause()                                            # Pause the simulation to populate the LIDAR's depth buffers
 4    depth = lidarInterface.get_linear_depth_data("/World"+lidarPath)
 5    zenith = lidarInterface.get_zenith_data("/World"+lidarPath)
 6    azimuth = lidarInterface.get_azimuth_data("/World"+lidarPath)
 7    print("depth", depth)                                       # Print the data
 8    print("zenith", zenith)
 9    print("azimuth", azimuth)
10timeline.play()                                                 # Start the Simulation
11asyncio.ensure_future(get_lidar_param())                        # Only ask for data after sweep is complete
  1. Run the full script:

Expand to display full code
 1# provides the core omniverse apis
 2import omni
 3# used to run sample asynchronously to not block rendering thread
 4import asyncio
 5# import the python bindings to interact with lidar sensor
 6from omni.isaac.range_sensor import _range_sensor
 7# pxr usd imports used to create cube
 8from pxr import UsdGeom, Gf, UsdPhysics
 9
10stage = omni.usd.get_context().get_stage()
11lidarInterface = _range_sensor.acquire_lidar_sensor_interface()
12timeline = omni.timeline.get_timeline_interface()
13omni.kit.commands.execute('AddPhysicsSceneCommand',stage = stage, path='/World/PhysicsScene')
14lidarPath = "/LidarName"
15result, prim = omni.kit.commands.execute(
16            "RangeSensorCreateLidar",
17            path=lidarPath,
18            parent="/World",
19            min_range=0.4,
20            max_range=100.0,
21            draw_points=False,
22            draw_lines=True,
23            horizontal_fov=360.0,
24            vertical_fov=30.0,
25            horizontal_resolution=0.4,
26            vertical_resolution=4.0,
27            rotation_rate=0.0,
28            high_lod=False,
29            yaw_offset=0.0,
30            enable_semantics=False
31        )
32
33CubePath = "/World/CubeName"
34cubeGeom = UsdGeom.Cube.Define(stage, CubePath)
35cubePrim = stage.GetPrimAtPath(CubePath)
36cubeGeom.AddTranslateOp().Set(Gf.Vec3f(2.0, 0.0, 0.0))
37cubeGeom.CreateSizeAttr(1)
38collisionAPI = UsdPhysics.CollisionAPI.Apply(cubePrim)
39async def get_lidar_param():
40    await omni.kit.app.get_app().next_update_async()
41    timeline.pause()
42    depth = lidarInterface.get_linear_depth_data("/World"+lidarPath)
43    zenith = lidarInterface.get_zenith_data("/World"+lidarPath)
44    azimuth = lidarInterface.get_azimuth_data("/World"+lidarPath)
45    print("depth", depth)
46    print("zenith", zenith)
47    print("azimuth", azimuth)
48timeline.play()
49asyncio.ensure_future(get_lidar_param())

You should view the following:

Segmented Lidar Point Cloud

Segment a Point Cloud

This code snippet shows how to add semantic labels to the depth data for segmenting its resulting point cloud.

 1import omni                                                     # Provides the core omniverse apis
 2import asyncio                                                  # Used to run sample asynchronously to not block rendering thread
 3from omni.isaac.range_sensor import _range_sensor               # Imports the python bindings to interact with lidar sensor
 4from pxr import UsdGeom, Gf, UsdPhysics, Semantics              # pxr usd imports used to create cube
 5
 6stage = omni.usd.get_context().get_stage()                      # Used to access Geometry
 7timeline = omni.timeline.get_timeline_interface()               # Used to interact with simulation
 8lidarInterface = _range_sensor.acquire_lidar_sensor_interface() # Used to interact with the LIDAR
 9# These commands are the Python-equivalent of the first half of this tutorial
10omni.kit.commands.execute('AddPhysicsSceneCommand',stage = stage, path='/World/PhysicsScene')
11lidarPath = "/LidarName"
12# Create lidar prim
13result, prim = omni.kit.commands.execute(
14            "RangeSensorCreateLidar",
15            path=lidarPath,
16            parent="/World",
17            min_range=0.4,
18            max_range=100.0,
19            draw_points=True,
20            draw_lines=False,
21            horizontal_fov=360.0,
22            vertical_fov=60.0,
23            horizontal_resolution=0.4,
24            vertical_resolution=0.4,
25            rotation_rate=0.0,
26            high_lod=True,
27            yaw_offset=0.0,
28            enable_semantics=True
29        )
30UsdGeom.XformCommonAPI(prim).SetTranslate((2.0, 0.0, 0.0))
31
32# Create a cube, sphere, add collision and different semantic labels
33primType = ["Cube", "Sphere"]
34for i in range(2):
35    prim = stage.DefinePrim("/World/"+primType[i], primType[i])
36    UsdGeom.XformCommonAPI(prim).SetTranslate((-2.0, -2.0 + i * 4.0, 0.0))
37    UsdGeom.XformCommonAPI(prim).SetScale((1, 1, 1))
38    collisionAPI = UsdPhysics.CollisionAPI.Apply(prim)
39
40    # Add semantic label
41    sem = Semantics.SemanticsAPI.Apply(prim, "Semantics")
42    sem.CreateSemanticTypeAttr()
43    sem.CreateSemanticDataAttr()
44    sem.GetSemanticTypeAttr().Set("class")
45    sem.GetSemanticDataAttr().Set(primType[i])
46
47# Get point cloud and semantic id for lidar hit points
48async def get_lidar_param():
49    await asyncio.sleep(1.0)
50    timeline.pause()
51    pointcloud = lidarInterface.get_point_cloud_data("/World"+lidarPath)
52    semantics = lidarInterface.get_semantic_data("/World"+lidarPath)
53
54    print("Point Cloud", pointcloud)
55    print("Semantic ID", semantics)
56
57timeline.play()                                                 # Start the Simulation
58asyncio.ensure_future(get_lidar_param())                        # Only ask for data after sweep is complete

The main differences between this example and the previous are as follows:

  1. The LIDAR’s enable_semantics flag is set to True on creation (line 29).

  2. The Cube and Sphere prims are assigned different semantic labels (lines 41-46).

  3. get_point_cloud_data and get_semantic_data are used to retrieve the Point Cloud data and Semantic IDs (lines 52-53).

The segmented point cloud from lidar sensor should look like the image below:

Segmented Lidar Point Cloud

Summary

This tutorial covered the following topics:

  1. Creating and attaching a LIDAR to geometry using the Omniverse Isaac Sim User Interface.

  2. Creating and controlling a LIDAR using the LIDAR Python API.

  3. Point Cloud Segmentation using the LIDAR and Semantics APIs.

Next Steps

Refer to the other Sensor tutorials in our Advanced Tutorials section, Using Sensors: Generic Range Sensor, to learn how to integrate additional range sensors into Omniverse Isaac Sim.

Further Learning

For a more in-depth look into the concepts covered in this tutorial, refer to the following reference materials:

LIDAR

  • Try the LIDAR Example at Isaac Examples > Sensors > LIDAR.

Range Sensors