usdrt::UsdGeomCapsule

Defined in usdrt/scenegraph/usd/usdGeom/capsule.h

class UsdGeomCapsule : public usdrt::UsdGeomGprim

Defines a primitive capsule, i.e. a cylinder capped by two half spheres, centered at the origin, whose spine is along the specified axis. For any described attribute Fallback Value or Allowed Values below that are text/tokens, the actual token is published and defined in UsdGeomTokens. So to set an attribute to the value “rightHanded”, use UsdGeomTokens->rightHanded as the value.

Public Functions

inline explicit UsdGeomCapsule(const UsdPrim &prim = UsdPrim())

Construct a UsdGeomCapsule on UsdPrim prim. Equivalent to UsdGeomCapsule::Get(prim.GetStage(), prim.GetPath()) for a valid prim , but will not immediately throw an error for an invalid prim.

inline explicit UsdGeomCapsule(const UsdSchemaBase &schemaObj)

Construct a UsdGeomCapsule on the prim held by schemaObj . Should be preferred over UsdGeomCapsule(schemaObj.GetPrim()), as it preserves SchemaBase state.

inline virtual ~UsdGeomCapsule()

Destructor.

inline UsdAttribute GetHeightAttr() const

The size of the capsule’s spine along the specified axis excluding the size of the two half spheres, i.e. the size of the cylinder portion of the capsule. If you author height you must also author extent.

Declaration

double height = 1

C++ Type

double

Usd Type

SdfValueTypeNames->Double

See also

GetExtentAttr()

inline UsdAttribute CreateHeightAttr() const

See GetHeightAttr(), and also Create vs Get Property Methods for when to use Get vs Create. If specified, author defaultValue as the attribute’s default, sparsely (when it makes sense to do so) if writeSparsely is true - the default for writeSparsely is false.

inline UsdAttribute GetRadiusAttr() const

The radius of the capsule. If you author radius you must also author extent.

Declaration

double radius = 0.5

C++ Type

double

Usd Type

SdfValueTypeNames->Double

See also

GetExtentAttr()

inline UsdAttribute CreateRadiusAttr() const

See GetRadiusAttr(), and also Create vs Get Property Methods for when to use Get vs Create. If specified, author defaultValue as the attribute’s default, sparsely (when it makes sense to do so) if writeSparsely is true - the default for writeSparsely is false.

inline UsdAttribute GetAxisAttr() const

The axis along which the spine of the capsule is aligned.

Declaration

uniform token axis = "Z"

C++ Type

TfToken

Usd Type

SdfValueTypeNames->Token

Variability

SdfVariabilityUniform

Allowed Values

X, Y, Z

inline UsdAttribute CreateAxisAttr() const

See GetAxisAttr(), and also Create vs Get Property Methods for when to use Get vs Create. If specified, author defaultValue as the attribute’s default, sparsely (when it makes sense to do so) if writeSparsely is true - the default for writeSparsely is false.

inline UsdAttribute GetExtentAttr() const

Extent is re-defined on Capsule only to provide a fallback value.

Declaration

float3[] extent = [(-0.5, -0.5, -1), (0.5, 0.5, 1)]

C++ Type

VtArray<GfVec3f>

Usd Type

SdfValueTypeNames->Float3Array

inline UsdAttribute CreateExtentAttr() const

See GetExtentAttr(), and also Create vs Get Property Methods for when to use Get vs Create. If specified, author defaultValue as the attribute’s default, sparsely (when it makes sense to do so) if writeSparsely is true - the default for writeSparsely is false.

inline UsdAttribute GetDisplayColorAttr() const

It is useful to have an “official” colorSet that can be used as a display or modeling color, even in the absence of any specified shader for a gprim. DisplayColor serves this role; because it is a UsdGeomPrimvar, it can also be used as a gprim override for any shader that consumes a displayColor parameter.

Declaration

color3f[] primvars:displayColor

C++ Type

VtArray<GfVec3f>

Usd Type

SdfValueTypeNames->Color3fArray

inline UsdAttribute CreateDisplayColorAttr() const

See GetDisplayColorAttr(), and also Create vs Get Property Methods for when to use Get vs Create. If specified, author defaultValue as the attribute’s default, sparsely (when it makes sense to do so) if writeSparsely is true - the default for writeSparsely is false.

inline UsdAttribute GetDisplayOpacityAttr() const

Companion to displayColor that specifies opacity, broken out as an independent attribute rather than an rgba color, both so that each can be independently overridden, and because shaders rarely consume rgba parameters.

Declaration

float[] primvars:displayOpacity

C++ Type

VtArray<float>

Usd Type

SdfValueTypeNames->FloatArray

inline UsdAttribute CreateDisplayOpacityAttr() const

See GetDisplayOpacityAttr(), and also Create vs Get Property Methods for when to use Get vs Create. If specified, author defaultValue as the attribute’s default, sparsely (when it makes sense to do so) if writeSparsely is true - the default for writeSparsely is false.

inline UsdAttribute GetDoubleSidedAttr() const

Although some renderers treat all parametric or polygonal surfaces as if they were effectively laminae with outward-facing normals on both sides, some renderers derive significant optimizations by considering these surfaces to have only a single outward side, typically determined by control-point winding order and/or orientation. By doing so they can perform “backface culling” to avoid drawing the many polygons of most closed surfaces that face away from the viewer.

However, it is often advantageous to model thin objects such as paper and cloth as single, open surfaces that must be viewable from both sides, always. Setting a gprim’s doubleSided attribute to true instructs all renderers to disable optimizations such as backface culling for the gprim, and attempt (not all renderers are able to do so, but the USD reference GL renderer always will) to provide forward-facing normals on each side of the surface for lighting calculations.

Declaration

uniform bool doubleSided = 0

C++ Type

bool

Usd Type

SdfValueTypeNames->Bool

Variability

SdfVariabilityUniform

inline UsdAttribute CreateDoubleSidedAttr() const

See GetDoubleSidedAttr(), and also Create vs Get Property Methods for when to use Get vs Create. If specified, author defaultValue as the attribute’s default, sparsely (when it makes sense to do so) if writeSparsely is true - the default for writeSparsely is false.

inline UsdAttribute GetOrientationAttr() const

Orientation specifies whether the gprim’s surface normal should be computed using the right hand rule, or the left hand rule. Please see UsdGeom_WindingOrder for a deeper explanation and generalization of orientation to composed scenes with transformation hierarchies.

Declaration

uniform token orientation = "rightHanded"

C++ Type

TfToken

Usd Type

SdfValueTypeNames->Token

Variability

SdfVariabilityUniform

Allowed Values

rightHanded, leftHanded

inline UsdAttribute CreateOrientationAttr() const

See GetOrientationAttr(), and also Create vs Get Property Methods for when to use Get vs Create. If specified, author defaultValue as the attribute’s default, sparsely (when it makes sense to do so) if writeSparsely is true - the default for writeSparsely is false.

inline UsdAttribute GetXformOpOrderAttr() const

Encodes the sequence of transformation operations in the order in which they should be pushed onto a transform stack while visiting a UsdStage’s prims in a graph traversal that will effect the desired positioning for this prim and its descendant prims.

You should rarely, if ever, need to manipulate this attribute directly. It is managed by the AddXformOp(), SetResetXformStack(), and SetXformOpOrder(), and consulted by GetOrderedXformOps() and GetLocalTransformation().

Declaration

uniform token[] xformOpOrder

C++ Type

VtArray<TfToken>

Usd Type

SdfValueTypeNames->TokenArray

Variability

SdfVariabilityUniform

inline UsdAttribute CreateXformOpOrderAttr() const

See GetXformOpOrderAttr(), and also Create vs Get Property Methods for when to use Get vs Create. If specified, author defaultValue as the attribute’s default, sparsely (when it makes sense to do so) if writeSparsely is true - the default for writeSparsely is false.

inline UsdAttribute GetVisibilityAttr() const

Visibility is meant to be the simplest form of “pruning” visibility that is supported by most DCC apps. Visibility is animatable, allowing a sub-tree of geometry to be present for some segment of a shot, and absent from others; unlike the action of deactivating geometry prims, invisible geometry is still available for inspection, for positioning, for defining volumes, etc.

Declaration

token visibility = "inherited"

C++ Type

TfToken

Usd Type

SdfValueTypeNames->Token

Allowed Values

inherited, invisible

inline UsdAttribute CreateVisibilityAttr() const

See GetVisibilityAttr(), and also Create vs Get Property Methods for when to use Get vs Create. If specified, author defaultValue as the attribute’s default, sparsely (when it makes sense to do so) if writeSparsely is true - the default for writeSparsely is false.

inline UsdAttribute GetPurposeAttr() const

Purpose is a classification of geometry into categories that can each be independently included or excluded from traversals of prims on a stage, such as rendering or bounding-box computation traversals.

See UsdGeom_ImageablePurpose for more detail about how purpose is computed and used.

Declaration

uniform token purpose = "default"

C++ Type

TfToken

Usd Type

SdfValueTypeNames->Token

Variability

SdfVariabilityUniform

Allowed Values

default, render, proxy, guide

inline UsdAttribute CreatePurposeAttr() const

See GetPurposeAttr(), and also Create vs Get Property Methods for when to use Get vs Create. If specified, author defaultValue as the attribute’s default, sparsely (when it makes sense to do so) if writeSparsely is true - the default for writeSparsely is false.

inline UsdRelationship GetProxyPrimRel() const

The proxyPrim relationship allows us to link a prim whose purpose is “render” to its (single target) purpose=”proxy” prim. This is entirely optional, but can be useful in several scenarios:

  • In a pipeline that does pruning (for complexity management) by deactivating prims composed from asset references, when we deactivate a purpose=”render” prim, we will be able to discover and additionally deactivate its associated purpose=”proxy” prim, so that preview renders reflect the pruning accurately.

  • DCC importers may be able to make more aggressive optimizations for interactive processing and display if they can discover the proxy for a given render prim.

  • With a little more work, a Hydra-based application will be able to map a picked proxy prim back to its render geometry for selection.

Note

It is only valid to author the proxyPrim relationship on prims whose purpose is “render”.

inline UsdRelationship CreateProxyPrimRel() const

See GetProxyPrimRel(), and also Create vs Get Property Methods for when to use Get vs Create.

UsdPrim GetPrim() const

Return this schema object’s held prim.

SdfPath GetPath() const

Return the SdfPath to this schema object’s held prim.

inline explicit operator bool() const

Check if this schema object is compatible with it’s held prim and that the prim is valid.

A typed schema object is compatible if the held prim’s type is or is a subtype of the schema’s type. Based on prim.IsA().

An API schema object is compatible if the API is of type SingleApplyAPI or UsdSchemaType::MultipleApplyAPI, and the schema has been applied to the prim. Based on prim.HasAPI.

This method invokes polymorphic behaviour.

Returns

True if the help prim is valid, and the schema object is compatible with its held prim.

Public Static Functions

static inline UsdGeomCapsule Define(const UsdStageRefPtr &stage, const SdfPath &path)

Attempt to ensure a UsdPrim adhering to this schema at path is defined (according to UsdPrim::IsDefined()) on this stage.

Public Static Attributes

static const UsdSchemaType schemaType = UsdSchemaType::ConcreteTyped

Compile time constant representing what kind of schema this class is.

See also

UsdSchemaType

Protected Functions

inline virtual bool _IsCompatible() const

Helper for subclasses to do specific compatibility checking with the given prim. Subclassess may override _isCompatible to for example check type compatibility or value compatibility on the prim.

Overrides exist for UsdTyped and UsdAPISchemaBase.

This check is called when clients invoke the bool operator.

Returns

True if the schema object is compatible with its held prim.

inline const TfToken _GetType() const

Helper for subclasses to get this schema’s type token.

Note

This diverges from Usd and returns a TfToken, since we don’t implements TfType.

Returns

The token representing the schema’s TfType.