OmniSurfaceBase and OmniSurfaceLiteBase#

OmniSurfaceBase and OmniSurfaceLiteBase are physically-based materials designed based Autodesk® Standard Surface, capable of modeling a wide variety of surface appearances, including plastic, concrete, water, car paint, skin, foliage, foam, wax, wood, velvet, etc. This documents the base features. The non-base materials have direct texture mapping parameters and are standalone uber materials.

OmniSurfaceBase and OmniSurfaceLiteBase come with a small set of parameters with intuitive meanings, ranges, and predictable results.

Note

For creating simple materials, the use of OmniSurfaceLiteBase is encouraged. In general, OmniSurfaceLiteBase renders faster.

Parameters#

Base

The Base color of a surface before lighting calculations. Base represents only the pure color reflection of a surface, excluding lighting, shadows, or reflective properties.

Parameters
:align: center#

Display Name

Name

Type

Default

Weight

diffuse_reflection_weight

float

0.8

Color

diffuse_reflection_color

color

1.0, 1.0, 1.0

Diffuse Roughness

diffuse_reflection_roughness

float

0.0

Metalness

metalness

float

0.0

This layer models the base layer, a statistical mix between diffuse reflection and diffuse transmission components.

Weight

This parameter sets the weight of diffused reflection or metallic reflectance.

../_images/rtx_material_omnisurfacebase_diffuse_reflection_weight_0p0.jpg
../_images/rtx_material_omnisurfacebase_diffuse_reflection_weight_1p0.jpg

Color

This parameter sets diffuse reflection color of the dielectric surface or reflectance value of metallic surface by the probability that light is reflected or transmitted for each wavelength.

../_images/rtx_material_omnisurfacebase_diffuse_reflection_color_0p95_0p55_0p0.jpg
../_images/rtx_material_omnisurfacebase_diffuse_reflection_color_wood.jpg

Diffuse Roughness

Oren-Nayar surface roughness coefficient, simulating view-dependent diffuse reflection. At 0.0, the surface behaves similarly to a fully Lambertian reflection. Higher values are suitable for powdery surfaces like dust, sand, dried clay, concrete, etc.

../_images/rtx_material_omnisurfacebase_diffuse_reflection_roughness_0p0.jpg
../_images/rtx_material_omnisurfacebase_diffuse_reflection_roughness_0p5.jpg
../_images/rtx_material_omnisurfacebase_diffuse_reflection_roughness_1p0.jpg

Metalness

At 0.0, the material consists of a diffuse or transmissive base layer, with a specular reflection layer on top. When set to 1.0, the surface behaves like a metallic surface. For fully reflective metal, one can set the base weight and metalness to 1.0 and decrease specular reflection roughness to 0.0. Metalness values between 0.0 and 1.0 can create surfaces like oxidized copper when some surface areas are reflective, and some areas are not.

../_images/rtx_material_omnisurfacebase_metalness_0p0_scuffed_platinum.jpg
../_images/rtx_material_omnisurfacebase_metalness_0p5_scuffed_platinum.jpg
../_images/rtx_material_omnisurfacebase_metalness_1p0_scuffed_platinum.jpg
../_images/rtx_material_omnisurfacebase_metalness_1p0_painted_metal.jpg

The metallic reflection is modeled as a GGX microfacet conductor BRDF. The absorption coefficient and complex index of refraction are computed from the base color and the specular reflection color. The base color controls the metallic surface appearance, and specular reflection weight and specular reflection color parameters only affect the edge tint.

See Thin Film section for more information.

../_images/rtx_material_omnisurfacebase_metalness_nickel.jpg

Base Color: 0.649, 0.610, 0.541#

Specular Color: 0.797, 0.801, 0.789

../_images/rtx_material_omnisurfacebase_metalness_gold.jpg

Base Color: 0.944, 0.776, 0.373#

Specular Color: 0.998, 0.981, 0.751

../_images/rtx_material_omnisurfacebase_metalness_copper.jpg

Base Color: 0.926, 0.721, 0.504#

Specular Color: 0.996, 0.957, 0.823

Specular

The specular component controls direct surface reflections in materials. It simulates mirror-like behavior by defining reflection intensity, surface micro-roughness, and angle-dependent reflectivity (Fresnel effect).

Parameters

Display Name

Name

Type

Default

Weight

specular_reflection_weight

float

1.0

Color

specular_reflection_color

color

1.0, 1.0, 1.0

Roughness

specular_reflection_roughness

float

0.2

IOR Preset

specular_reflection_ior_preset

enum

ior_custom

IOR

specular_reflection_ior

float

1.5

Anisotropy

specular_reflection_anisotropy

float

0.0

Rotation (rad)

specular_reflection_anisotropy_rotation

float

0.0

This layer models a GGX microfacet dielectric BRDF under the coating layer. Due to Fresnel, this layer is not energy conversing. Thus the energy that is not reflected is transmitted to the underlying layers.

Weight

This parameter sets the amount of the specular reflection. Lowering this value increases light transmission through the object’s volume.

../_images/rtx_material_omnisurfacebase_specular_reflection_weight_0p0.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_weight_0p5.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_weight_1p0.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_weight_1p0_smudge.jpg

When Metalness is greater than 0.0, this parameter sets the edge tint weight for the metal surface.

../_images/rtx_material_omnisurfacebase_specular_reflection_weight_0p0_metalness_edge_tint.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_weight_0p5_metalness_edge_tint.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_weight_1p0_metalness_edge_tint.jpg

Color

This parameter sets the color of the specular reflection. While some metallic (conductor) surfaces have colored specular reflections, dielectric surfaces have only achromatic specular reflections.

../_images/rtx_material_omnisurfacebase_specular_reflection_color_1p0_1p0_1p0.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_color_0p0_0p7_1p0.jpg

Tip

Setting the specular reflection color for dielectric surfaces other than white is not physically correct.

When metalness is greater than 0.0, this parameter sets the edge tint color.

../_images/rtx_material_omnisurfacebase_specular_reflection_color_1p0_1p0_1p0_metalness.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_color_0p0_0p7_1p0_metalness.jpg

Roughness

This parameter sets the surface microfacet’s irregularities that cause light diffusion. At 0.0 simulates a perfect and smooth reflective surface, while increasing the value causes reflective highlights to diverge or appear blurred.

../_images/rtx_material_omnisurfacebase_specular_reflection_roughness_0p0.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_roughness_0p25.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_roughness_0p5.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_roughness_1p0.jpg

Roughness affects both specular reflection and specular transmission.

../_images/rtx_material_omnisurfacebase_specular_reflection_roughness_0p0_refraction.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_roughness_0p25_refraction.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_roughness_0p5_refraction.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_roughness_1p0_refraction.jpg

Tip

Roughness can create effects like torn surfaces, galvanized metal, or surfaces with fingerprints and smudges.

../_images/rtx_material_omnisurfacebase_specular_reflection_roughness_clay.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_roughness_galvanized.jpg

IOR Preset

This parameter presents a list of known IORs (index of refractions) for various materials, including glass, ice, diamond, skin. One can use custom IOR by setting this parameter to ior_custom and a value for the specular reflection’s IOR parameter.

IOR

This parameter sets IOR (index of refraction), which affects surface Fresnel reflectivity. The IOR defines the ratio between reflection on the surface front, facing the viewer, and the surface edges, facing away the viewer.

At values above 1.0, the reflection appears stronger on the surface edges and weaker on the surface front. At values less than 1.0, the Fresnel is disabled, and the specular reflection appears as a uniform highlight over the surface.

Tip

At high values, the surface will look similar to a metallic surface. If a metallic look is desired, the metalness parameter is encouraged instead since the range [0, 1] can be easily mapped with an input texture.

../_images/rtx_material_omnisurfacebase_specular_reflection_ior_1p0.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_ior_2p5.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_ior_5p0.jpg

IOR affects both the specular reflection and the specular transmission.

../_images/rtx_material_omnisurfacebase_specular_reflection_ior_1p0_refraction.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_ior_1p5_refraction.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_ior_2p5_refraction.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_ior_5p0_refraction.jpg

Anisotropy

This parameter sets the specular reflection anisotropy. Reflectance changes based on the surface orientation are called anisotropic. If the reflectance is uniform in all directions and does not change based on the surface’s rotation or orientation, it is isotropic.

At values above 0.0, the surface transmits and reflects incoming light with a directional bias. Thus it appears rougher in a specific direction.

../_images/rtx_material_omnisurfacebase_specular_reflection_anisotropy_0p0.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_anisotropy_0p5.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_anisotropy_1p0.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_anisotropy_pattern.jpg

Rotation (radians)

This parameter sets the orientation of the anisotropic effect in radians. At 1.0, the anisotropic effect is rotated by 180 degrees. For brushed metallic surfaces, the anisotropic effect should stretch out in a direction perpendicular to the brushing direction.

../_images/rtx_material_omnisurfacebase_specular_reflection_anisotropy_rotation_0p0.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_anisotropy_rotation_0p5.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_anisotropy_rotation_0p75.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_anisotropy_rotation_1p0.jpg
Transmission

Transmission defines how light passes through a material. It controls transparency and refraction effects in glass, liquids, thin plastics, and other translucent materials. The transmission properties determine light absorption, color filtering, and how rays bend when entering and exiting the material.

Parameters
:align: center#

Display Name

Name

Type

Default

Enable Transmission

enable_specular_transmission

bool

false

Weight

specular_transmission_weight

float

0.0

Color

specular_transmission_color

color

1.0, 1.0, 1.0

Depth

specular_transmission_scattering_depth

float

0.0

Scatter

specular_transmission_scattering_color

color

0.0, 0.0, 0.0

Scatter Anisotropy

specular_transmission_scatter_anisotropy

float

0.0

Dispersion Abbe

specular_transmission_dispersion_abbe

float

0.0

This layer models a GGX microfacet BTDF within a homogeneous medium interior to the object, under the specular reflection layer. It shares a few key parameters with the Specular reflection layer, including Roughness, IOR, Anisotropy, and Anisotropy Rotation.

If thin-walled enabled, the surface appears double-sided, represented as an infinitely thin shell. Upon specular transmission, the incoming light is not refracted to the opposite side. The refraction index sets to the surrounding medium.

If thin-walled disabled, the surface is considered to be a boundary of a finite-sized solid object. And according to the specular reflection layer, the incoming light refracts when entering and leaving the object.

../_images/rtx_material_omnisurfacebase_specular_transmission_volume.jpg
../_images/rtx_material_omnisurfacebase_specular_transmission_thin_walled.jpg

Note

Specular Transmission vs. Geometry Opacity

Specular transmission controls the surface transparency, while geometry opacity controls the surface visibility. One can use the specular transmission to create a glass surface and then use the opacity to cut the surface.

Note

In the RTX – Interactive (Path Tracing) mode, if refraction appears black, one may need to increase Max Bounces Specular/Transmission and Max Bounces in the render settings panel.

Please see RTX Interactive (Path Tracing) mode render settings for more information.

../_images/rtx_material_omnisurfacebase_specular_transmission_4_transmission_bounces.jpg

Max Bounces: 8#

../_images/rtx_material_omnisurfacebase_specular_transmission_8_transmission_bounces.jpg

Max Bounces: 8#

../_images/rtx_material_omnisurfacebase_specular_transmission_16_transmission_bounces.jpg

Max Bounces: 8#

../_images/rtx_material_omnisurfacebase_specular_transmission_16_transmission_bounces_64_max_bounces.jpg

Max Bounces: 64#

Enable Specular Transmission

Enables specular transmission layer

Weight

This parameter sets the amount of light to pass and scatter through the surface. At 0.0, the surface is completely opaque, while at 1.0, the surface is fully transparent.

../_images/rtx_material_omnisurfacebase_specular_transmission_weight_0p0.jpg
../_images/rtx_material_omnisurfacebase_specular_transmission_weight_0p5.jpg
../_images/rtx_material_omnisurfacebase_specular_transmission_weight_0p75.jpg
../_images/rtx_material_omnisurfacebase_specular_transmission_weight_1p0.jpg

Color

This parameter sets the transmission color, which affects the travel of refracted rays in the volume using Beer’s law. Therefore red colored glass gets a deeper red as refracted rays travel deeper in the volume. A transmission color close to black makes the interior of the volume very dense. A darker transmission color can be used to render deep-ocean water, orange juice, and similar materials. Color and Depth’s positive values are used together to set the extinction coefficient (sigma_t) of the interior volume to the object.

Tip

For a realistic result, specular transmission color should not be set to saturated colors, i.e., pure red (1.0, 0.0, 0.0).

../_images/rtx_material_omnisurfacebase_specular_transmission_color_light_red.jpg
../_images/rtx_material_omnisurfacebase_specular_transmission_color_dark_red.jpg
../_images/rtx_material_omnisurfacebase_specular_transmission_color_rainbow.jpg

Depth

This parameter sets the distance traveled by refracted white rays before their colors turned into the transmission color by Beer’s law. At 0.0, the interior medium to the object is null, and transmission color tints the material’s refraction. Decreasing the depth increases the volume absorption and scattering, which makes the volume more opaque.

The effect of depth depends on the absolute size of the objects, and hence depth is a scene scale-dependent parameter.

Tip

For a realistic result, one should model to a real-world scale and set the depth to 1.0.

../_images/rtx_material_omnisurfacebase_specular_transmission_depth_0p0.jpg
../_images/rtx_material_omnisurfacebase_specular_transmission_depth_0p1.jpg
../_images/rtx_material_omnisurfacebase_specular_transmission_depth_0p5.jpg
../_images/rtx_material_omnisurfacebase_specular_transmission_depth_1p0.jpg

Scatter

This parameter sets the scattering coefficient (sigma_s) of the interior medium to the object. The scattering color describes how much “refracted rays” are scattered while traveling inside the medium. The light’s red, green, and blue components are scattered by different amounts when the scattering color sets to a non-grey hue.

Ice, opalescent glass, and honey are a few examples of materials with a high scattering coefficient.

../_images/rtx_material_omnisurfacebase_specular_transmission_scatter_0p0_0p00_0p0.jpg
../_images/rtx_material_omnisurfacebase_specular_transmission_scatter_0p3_0p05_0p0.jpg

Scatter Anisotropy

This parameter sets the scattering directionality or anisotropy of the “Henyey-Greenstein” phase function of the interior medium to the object. At 0.0, scattering sets to isotropic, and light is scattered uniformly in all directions. Values above 0.0 biases the scattering effect forward in the direction of the light, while values below 0.0 biases the scattering effect backward in the opposite direction of the light.

../_images/rtx_material_omnisurfacebase_specular_transmission_anisotropy_N1p0.jpg
../_images/rtx_material_omnisurfacebase_specular_transmission_anisotropy_0p0.jpg
../_images/rtx_material_omnisurfacebase_specular_transmission_anisotropy_1p0.jpg

Dispersion Abbe

This parameter sets how much the index of refraction varies across wavelengths. Lowering the abbe number increases the effect of dispersion. When thin-walled enabled, dispersion has no effects.

../_images/rtx_material_omnisurfacebase_specular_transmission_abbe_0.jpg
../_images/rtx_material_omnisurfacebase_specular_transmission_abbe_1.jpg
../_images/rtx_material_omnisurfacebase_specular_transmission_abbe_5.jpg
../_images/rtx_material_omnisurfacebase_specular_transmission_abbe_10.jpg
Subsurface

Subsurface scattering simulates how light penetrates and scatters within translucent materials before re-emerging. This effect is essential for organic materials like skin, wax, and marble, where light diffusion beneath the surface creates soft, translucent appearance. The subsurface component controls scatter distance, color absorption, and penetration depth.

Parameters

Display Name

Name

Type

Default

Enable Subsurface

enable_diffuse_transmission

bool

false

Weight

subsurface_weight

float

0.0

Scattering Presets

subsurface_scattering_colors_preset

enum

scattering_colors_custom

Color

subsurface_transmission_color

color

1.0, 1.0, 1.0

Radius (mfp)

subsurface_scattering_color

color

1.0, 1.0, 1.0

Scale

subsurface_scale

float

1.0

Anisotropy

subsurface_anisotropy

float

0.0

This layer models the effect of light absorption and scattering within a homogeneous medium interior to the object, where the exiting rays leave at a different surface location than the incident rays.

Subsurface can be used to create materials like plastic, marble, skin, wax, milk, and leaf.

In the path-tracer mode, the subsurface component is calculated using the “Random Walk” technique. The Random Walk uses a stochastic or random process to trace the effect of light scattering through an object, with no assumption about geometric features of the object, i.e., local surface flatness, concavities.

In the real-time mode, the subsurface component is calculated by combining the diffusion profile and path tracing techniques. The diffusion profile is based on the Monte Carlo simulation result that describes the distribution of energy coming out of a semi-infinite flat surface of the scattering medium.

If thin-walled enabled, the subsurface represented as the diffuse transmission of light through an infinitely thin shell.

../_images/rtx_material_omnisurfacebase_subsurface_no_thin_walled.jpg
../_images/rtx_material_omnisurfacebase_subsurface_thin_walled.jpg

Note

For a correct result, properly constructed geometry is required, i.e., no self-intersections, closed or geometry with thickness, proper normal directions.

Note

If subsurface appears black in the path-tracer mode, one may need to increase Max Volume Scattering Bounces in the render settings panel. In practice, 32 bounces would be a good starting number.

Please see RTX Interactive (Path Tracing) mode render settings for more information.

../_images/rtx_material_omnisurfacebase_subsurface_max_volume_bounces_1.jpg
../_images/rtx_material_omnisurfacebase_subsurface_max_volume_bounces_2.jpg
../_images/rtx_material_omnisurfacebase_subsurface_max_volume_bounces_8.jpg
../_images/rtx_material_omnisurfacebase_subsurface_max_volume_bounces_32.jpg

Enable Subsurface

Enables diffuse transmission and subsurface layer

Weight

This parameter sets the amount of diffuse transmission and subsurface scattering. At 0.0, the surface is represented as diffuse only surface, and a higher value increases the visibility of diffuse transmission and subsurface scattering.

../_images/rtx_material_omnisurfacebase_subsurface_weight_0p0.jpg
../_images/rtx_material_omnisurfacebase_subsurface_weight_0p5.jpg
../_images/rtx_material_omnisurfacebase_subsurface_weight_1p0.jpg

Scattering Presets

This parameter presents a list of known subsurface scattering colors and radiuses for various materials, including apple, milk, ketchup, skin. One can use custom values by setting this parameter to scattering_colors_custom and set a value for color and radius parameters.

Color

This parameter sets the color of the subsurface scattering effects. When incoming rays reach the surface, they will get tinted by the subsurface color. The subsurface color and radius parameters determine the absorption and scattering within the medium interior to the object.

../_images/rtx_material_omnisurfacebase_subsurface_color_whole_milk.jpg

Whole Milk#

../_images/rtx_material_omnisurfacebase_subsurface_color_skin.jpg

Skin#

../_images/rtx_material_omnisurfacebase_subsurface_color_leather.jpg

Leather#

../_images/rtx_material_omnisurfacebase_subsurface_color_gem.jpg

Gem#

Radius (mfp)

This parameter sets the scattering radius, which describes as the mean free path (mfp). The mean free path is the average distance that rays travel before scattering below the surface and within the volume.

As the rays travel through the volume, they bounce around and emerge from the surface at different locations. This value corresponds to the average length the ray travels between each bounce. The higher the path length is, the further the ray is allowed to scatter within the volume.

At 0.0, there will be no scattering effect. Lower values mean scattered light is absorbed quicker, resulting in a more opaque look. At higher values, the surface appears more translucent.

../_images/rtx_material_omnisurfacebase_subsurface_radius_0p01.jpg
../_images/rtx_material_omnisurfacebase_subsurface_radius_0p1.jpg
../_images/rtx_material_omnisurfacebase_subsurface_radius_1p0.jpg

The scattering radius can be different per spectra.

../_images/rtx_material_omnisurfacebase_subsurface_radius_red.jpg
../_images/rtx_material_omnisurfacebase_subsurface_radius_green.jpg
../_images/rtx_material_omnisurfacebase_subsurface_radius_blue.jpg

For example, skin material would have a higher red value in the radius since red light (620-670nm) penetrates and scatter deepest into the skin compared to green and blue lights.

../_images/rtx_material_omnisurfacebase_subsurface_radius_skin_r0p5_g0p3_b0p2.jpg
../_images/rtx_material_omnisurfacebase_subsurface_radius_skin_r2p0_g0p3_b0p2.jpg

The effect of radius depends on the absolute size of the objects, and hence radius is a scene scale-dependent parameter.

Scale

This parameter scales the effect of scattering radius or the mean free path distance. If the scene is not modeled to scale, the scale parameter can be used to adjust the scattering effect. Lowering this value makes the object more diffuse, while at a higher value, it becomes more translucent.

The Scale parameter is adjusted based on the scene unit; if the scene scale is in meter, the scale of 1.0 corresponds to 1.0 meter.

../_images/rtx_material_omnisurfacebase_subsurface_scale_0p001.jpg

Subsurface Radius: 1.0, 1.0, 1.0_scale_0p001.jpg#

../_images/rtx_material_omnisurfacebase_subsurface_scale_0p01.jpg

Subsurface Radius: 1.0, 1.0, 1.0#

../_images/rtx_material_omnisurfacebase_subsurface_scale_0p1.jpg

Subsurface Radius: 1.0, 1.0, 1.0#

Anisotropy

This parameter sets the scattering directionality or anisotropy of the “Henyey-Greenstein” phase function of the interior medium to the object. At 0.0, scattering sets to isotropic, and light is scattered uniformly in all directions. Values above 0.0 biases the scattering effect forward in the direction of the light, while values below 0.0 biases the scattering effect backward in the opposite direction of the light.

Tip

Unlike hard materials, i.e., jade and marble, water-based materials, i.e., orange juice, ketchup, and skin, exhibit strong forward scattering.

../_images/rtx_material_omnisurfacebase_subsurface_anisotropy_N0p8.jpg
../_images/rtx_material_omnisurfacebase_subsurface_anisotropy_0p0.jpg
../_images/rtx_material_omnisurfacebase_subsurface_anisotropy_0p8.jpg
Coat

Coat simulates an additional transparent layer on top of a base material, common in automotive paints, polished wood, and plastic coatings. This layer adds a second specular reflection with its own roughness and intensity values, independent of the underlying material properties.

Parameters

Display Name

Name

Type

Default

Weight

coat_weight

float

0.0

Color

coat_color

color

1.0, 1.0, 1.0

Roughness

coat_roughness

float

0.1

IOR Preset

coat_ior_preset

enum

ior_custom

IOR

coat_ior

float

1.5

Anisotropy

coat_anisotropy

float

0.0

Rotation (rad)

coat_anisotropy_rotation

float

0.0

Affect Color

coat_affect_color

float

0.0

Affect Roughness

coat_affect_roughness

float

0.0

Normal

coat_normal

float3

state::normal()

This layer models GGX microfacet dielectric BRDF top coating. Due to Fresnel, this layer is not energy conserving. Thus the energy that is not reflected is transmitted to the underlying layers.

The coating simulates an infinitely thin shell dielectric layer, i.e., glass, enamel, lacquer, over the surface. It can create materials like metallic car paint, carbon fiber, oily skin, and wet asphalt.

Weight

This parameter sets the amount of surface coating. Lowering this value increases light transmission through the object’s volume.

Tip

For a realistic result, this parameter should be set to less than 1.0.

../_images/rtx_material_omnisurfacebase_coat_weight_0p0.jpg
../_images/rtx_material_omnisurfacebase_coat_weight_0p5.jpg
../_images/rtx_material_omnisurfacebase_coat_weight_1p0.jpg

Color

This parameter tints all layers below the coating layer. In the real world, lights scattered by underlying layers are tinted when transmitted through the colored coating.

../_images/rtx_material_omnisurfacebase_coat_color_no_coat.jpg

Coat Weight: 0.0#

../_images/rtx_material_omnisurfacebase_coat_color_white.jpg

Coat Weight: 1.0#

../_images/rtx_material_omnisurfacebase_coat_color_green.jpg

Coat Weight: 1.0#

This parameter emulates the effect of absorption within the coating medium.

../_images/rtx_material_omnisurfacebase_coat_color_white_base_no_coat.jpg

Base Color: White#

../_images/rtx_material_omnisurfacebase_coat_color_white_base_cyan_coat.jpg

Base Color: White#

../_images/rtx_material_omnisurfacebase_coat_color_yellow_base_no_coat.jpg

Base Color: Yellow#

../_images/rtx_material_omnisurfacebase_coat_color_yellow_base_cyan_coat.jpg

Base Color: Yellow#

Note

The reflection color is set to white for this layer.

Roughness

This parameter sets the surface microfacet’s irregularities that cause light diffusion. At 0.0 simulates a perfect and smooth reflective surface, while increasing the value causes reflective highlights to diverge or appear blurred.

Tip

Roughness can be used to create effects like torn surfaces or surfaces with fingerprints and smudges.

../_images/rtx_material_omnisurfacebase_coat_roughness_0p0.jpg
../_images/rtx_material_omnisurfacebase_coat_roughness_0p5.jpg
../_images/rtx_material_omnisurfacebase_coat_roughness_0p75.jpg
../_images/rtx_material_omnisurfacebase_coat_roughness_texture.jpg

IOR Preset

This parameter presents a list of known IORs (index of refractions) for various materials, including glass, ice, diamond, skin. One can use custom IOR by setting this parameter to ior_custom and a value for the specular reflection’s IOR parameter.

IOR

This parameter sets IOR (index of refraction), which affects surface Fresnel reflectivity. The IOR defines the ratio between reflection on the surface front, facing the viewer, and the surface edges, facing away the viewer.

At values above 1.0, the reflection appears stronger on the surface edges and weaker on the surface front. At values less than 1.0, the Fresnel is disabled, and the coating appears as a uniform highlight over the surface.

../_images/rtx_material_omnisurfacebase_coat_ior_1p0.jpg
../_images/rtx_material_omnisurfacebase_coat_ior_1p52.jpg
../_images/rtx_material_omnisurfacebase_coat_ior_5p0.jpg

Anisotropy

his parameter sets the specular reflection anisotropy. Reflectance changes based on the surface orientation are called anisotropic. If the reflectance is uniform in all directions and does not change based on the surface’s rotation or orientation, it is isotropic.

At values above 0.0, the surface transmits and reflects incoming light with a directional bias. Thus it appears rougher in a specific direction.

../_images/rtx_material_omnisurfacebase_coat_anisotropy_0p0.jpg
../_images/rtx_material_omnisurfacebase_coat_anisotropy_0p5.jpg
../_images/rtx_material_omnisurfacebase_coat_anisotropy_1p0.jpg

Rotation (radian)

This parameter sets the orientation of the anisotropic effect in radians. At 1.0, the anisotropic effect is rotated by 180 degrees. For brushed surfaces, the anisotropic effect should stretch out in a direction perpendicular to the brushing direction.

../_images/rtx_material_omnisurfacebase_coat_anisotropy_rotation_0p5.jpg
../_images/rtx_material_omnisurfacebase_coat_anisotropy_rotation_0p65.jpg
../_images/rtx_material_omnisurfacebase_coat_anisotropy_rotation_0p75.jpg

Affect Color

This parameter controls the saturation of diffuse reflection and subsurface under the coating layer.

In the real world, refracted rays exhibit internal reflection within the coating medium, which can go back down to the underlying surface to reflect again, thus making the surface more saturated and darker. Affect Color can be used to emulate this effect. At 0.0, this parameter has no effects.

../_images/rtx_material_omnisurfacebase_coat_affect_color_no_coat.jpg
../_images/rtx_material_omnisurfacebase_coat_affect_color_0p0.jpg
../_images/rtx_material_omnisurfacebase_coat_affect_color_1p0.jpg

Affect Roughness

This parameter controls the roughness of the specular reflection, and specular transmission under the coating layer.

In the real world, refracted rays exhibit internal reflection within the coating medium, which can go back down to the underlying surface, which may scatter due to the roughness of the undercoating surface. Affect Roughness can be used to emulate this effect. At 0.0, this parameter has no effects.

../_images/rtx_material_omnisurfacebase_coat_affect_roughness_base.jpg

Specular Reflection Weight: 1.0#

Specular Reflection Roughness: 0.0

../_images/rtx_material_omnisurfacebase_coat_affect_roughness_coat.jpg

Coat Weight: 1.0#

Coat Roughness: 0.5

../_images/rtx_material_omnisurfacebase_coat_affect_roughness_0p0.jpg

Coat Affect Roughness: 0.0#

../_images/rtx_material_omnisurfacebase_coat_affect_roughness_1p0.jpg

Coat Affect Roughness: 1.0#

../_images/rtx_material_omnisurfacebase_coat_affect_roughness_specular_transmission_base.jpg
../_images/rtx_material_omnisurfacebase_coat_affect_roughness_coat.jpg
../_images/rtx_material_omnisurfacebase_coat_affect_roughness_1p0_specular_transmission.jpg

Normal

This parameter sets the “normal direction” for the coating layer, which affects the Fresnel blending of the coating layer over the surface. The coat normal can create surface effects like raindrops, imperfections in car paint, or glazing on the food.

Note

The “coat normal” only affects the coating layer and has no effects on the underlying surface normal.

../_images/rtx_material_omnisurfacebase_coat_normal_droplets.jpg
../_images/rtx_material_omnisurfacebase_coat_normal_scratches.jpg
Sheen

Sheen simulates soft, velvet-like surface reflections common in fabrics and textiles. It adds angle-dependent color and roughness to create microfiber scattering effects typically seen in materials like cloth, carbon fiber, and velvet

Parameters

Display Name

Name

Type

Default

Weight

specular_retro_reflection_weight

float

0.0

Color

specular_retro_reflection_color

color

1.0, 1.0, 1.0

Roughness

specular_retro_reflection_roughness

float

0.3

This layer creates an energy-conserving retro-reflective sheen BRDF. Sheen simulates surface micro-fibers, with axes oriented parallel to the surface normal, creating specular highlights at grazing angles.

Sheen can create soft backscattering materials like fine powder, dust, satin, leaf, and peach fuzz on the skin.

Weight

This parameter sets the density and length of micro-fibers. At 0.0, sheen has no effects.

../_images/rtx_material_omnisurfacebase_sheen_weight_0p0.jpg
../_images/rtx_material_omnisurfacebase_sheen_weight_1p0.jpg

Color

This parameter tints the color of the sheen, i.e., micro-fibers.

../_images/rtx_material_omnisurfacebase_sheen_color_0p0_0p0_0p0.jpg
../_images/rtx_material_omnisurfacebase_sheen_color_0p75_0p07_0p45.jpg

Roughness

This parameter sets the sheen effect roughness. Micro-fibers diverge more from the “surface normal” direction at a higher value, resulting in a softer look.

../_images/rtx_material_omnisurfacebase_sheen_roughness_0p0.jpg
../_images/rtx_material_omnisurfacebase_sheen_roughness_0p15.jpg
../_images/rtx_material_omnisurfacebase_sheen_roughness_0p25.jpg
../_images/rtx_material_omnisurfacebase_sheen_roughness_0p5.jpg
Thin Film

Thin film simulates iridescent interference effects caused by microscopically thin transparent layers, as seen in soap bubbles, oil slicks, and some insect wings. The effect varies by viewing angle and film thickness, creating rainbow-like color shifts across the surface.

Parameters

Display Name

Name

Type

Default

Enable Thin Film

enable_thin_film

bool

false

Thickness (nm)

thin_film_thickness

float

400.0

IOR Preset

thin_film_ior_preset

enum

ior_custom

IOR

thin_film_ior

float

1.52

This layer models a reflective thin film when a metal and or specular reflection layer presents. Due to interference, a view-dependent iridescence effect occurs when the thin film layer thickness is close to the visible spectrum.

It can create materials like a peacock feather, burnt metal, soap bubble, and car paint.

Enable Thin Film

Enables thin film layer

Thickness (nm)

This parameter sets the thickness of the thin film layer in nanometers. At 0.0, the iridescence effect is disabled.

Tip

A typical soap bubble thickness is about 250 - 600 nanometers. By contrast, human hair thickness is in the range of 40,000 - 100,000 nanometers wide.

../_images/rtx_material_omnisurfacebase_thin_film_thickness_200nm.jpg
../_images/rtx_material_omnisurfacebase_thin_film_thickness_300nm.jpg
../_images/rtx_material_omnisurfacebase_thin_film_thickness_400nm.jpg
../_images/rtx_material_omnisurfacebase_thin_film_thickness_500nm.jpg

IOR Preset

This parameter presents a list of known IORs (index of refractions) for various materials, including glass, soap bubble, diamond. One can use custom IOR by setting this parameter to ior_custom and a value for the specular reflection’s IOR parameter.

IOR

This parameter sets the refractive index of the thin film layer.

Tip

The refractive index of water is 1.33, and a typical soap is 1.5. For a realistic result, the refractive index of the thin film should be less than soap and greater than water, i.e., 1.34 - 1.49.

../_images/rtx_material_omnisurfacebase_thin_film_ior_1p33.jpg
../_images/rtx_material_omnisurfacebase_thin_film_ior_1p5.jpg
../_images/rtx_material_omnisurfacebase_thin_film_ior_2p0.jpg
../_images/rtx_material_omnisurfacebase_thin_film_ior_2p5.jpg
Emission

Emissivity defines how much light a surface emits independently of received light. This parameter creates self-illuminating effects like neon signs, screens, or bioluminescence materials. Emissivity maintains physical accuracy by contributing to scene lighting and global illumination calculations.

Parameters

Display Name

Name

Type

Default

Weight

emission_weight

float

0.0

Emission Mode

emission_mode

enum

emission_lx

Intensity

emission_intensity

float

1.0

Color

emission_color

color

1.0, 1.0, 1.0

Use Temperature

emission_use_temperature

bool

false

Temperature

emission_temperature

float

6500.0

This layer adds directionally uniform EDF under the coating layer, which describes the light-emitting properties of the surface.

It can create materials like an incandescent light-bulb, glowing lava, and LED panel.

Note

In the RTX – Interactive (Path Tracing) mode, to reduce the noise in the indirectly lit area using emissive materials, one may need to increase the Total Samples per Pixel.

Please see RTX Interactive (Path Tracing) mode render settings for more information.

../_images/rtx_material_omnisurfacebase_emission_tspp_8.jpg
../_images/rtx_material_omnisurfacebase_emission_tspp_32.jpg
../_images/rtx_material_omnisurfacebase_emission_tspp_128.jpg
../_images/rtx_material_omnisurfacebase_emission_tspp_512.jpg

Weight

This parameter sets the amount of light emission from the surface.

../_images/rtx_material_omnisurfacebase_emission_weight_0p0.jpg
../_images/rtx_material_omnisurfacebase_emission_weight_0p5.jpg
../_images/rtx_material_omnisurfacebase_emission_weight_0p75.jpg
../_images/rtx_material_omnisurfacebase_emission_weight_1p0.jpg

Emission Mode

This parameter specifies the physical units to use for the emission intensity.

1. “Nit” is the unit of luminance and describes the surface power of a visible light source. The overall illumination of the scene changes depends on the size of the light source.

One nit is equal to one candela per square meter. 1 nit = 1 cd/m^2

The candela per square meter is the base unit of luminance. Candela is the base unit for luminous intensity.

A light source that emits one candela of luminous intensity onto an area of one square meter has a luminance of one candela per square meter or one nit. As an example, a calibrated monitor has a brightness of 120 cd/m^2 or 120 nits.

2. “Lux” is the unit of illuminance and describes the total amount of visible light that a light source emits. The overall illumination of the scene does not change depending on the size of the light source.

One lux is equal to one lumen per square meter. 1 lux = 1 lm/m^2

A light source that emits one candela of luminous intensity from an area of one steradian has a luminous flux of one lumen.

A light source that emits one lumen of luminous flux onto an area of one square meter has an illuminance of one lux. As an example, very bright sunlight has a brightness of 120,000 lux.

Intensity

This parameter sets the emission intensity. The emission mode parameter sets the physical unit for this parameter.

A few examples of illuminance under various lighting conditions:

Lighting Condition

Illuminance (lx)

Sunlight

100,000 - 120,000

Daylight

10,000 - 25,000

Overcast

1000

Twilight

10

Full moon

0.05 – 0.3

Ceiling lamp

400 - 800

Table lamp

200 - 300

Candle light

12.57

Color

This parameter sets the emission color.

../_images/rtx_material_omnisurfacebase_emission_color_rainbow.jpg
../_images/rtx_material_omnisurfacebase_emission_color_lava.jpg

Use Temperature

Enable the use of color temperature value instead of color.

Note

This parameter will override the default emission color, including any textures assigned to the emission color parameter.

Temperature (Kelvin)

This parameter specifies emission color using a color temperature in the Kelvin unit. Lower values are warmer, i.e., redder, while higher values are cooler, i.e., bluer. The default value of 6500K is close to D65 illuminant, the white point in sRGB and Rec. 709 color spaces.

../_images/rtx_material_omnisurfacebase_emission_color_temp_3200.jpg
../_images/rtx_material_omnisurfacebase_emission_color_temp_5000.jpg
../_images/rtx_material_omnisurfacebase_emission_color_temp_6500.jpg
Geometry

The geometry section defines how special surface effects are calculated relative to the underlying 3D geometry. These parameters control backface visibility, opacity thresholds, thin-film effects, and depth-based adjustments like opacity attenuation.

Parameters

Display Name

Name

Type

Default

Thin Walled

thin_walled

bool

false

Enable Opacity

enable_opacity

bool

false

Opacity

geometry_opacity

float

1.0

Opacity Threshold

geometry_opacity_threshold

float

0.0

Geometry Normal

geometry_normal

float3

state::normal()

Displacement

geometry_displacement

float3

0.0, 0.0, 0.0

Thin Walled

This parameter sets the surface as an infinitely thin double-sided shell with a refraction index of the surrounding medium, so refracted rays exit immediately instead of entering the medium.

Thin-walled is ideal for geometrically thin objects, like a sheet of paper, soap bubble, and leaves.

Note

“Dispersion” has no effects when Thin-Walled enabled.

../_images/rtx_material_omnisurfacebase_thin_walled_disabled_bubble.jpg
../_images/rtx_material_omnisurfacebase_thin_walled_enabled_bubble.jpg

Tip

When Thin-Walled is enabled, “subsurface” is represented as the diffuse transmission of the light through an infinitely thin shell, i.e., translucence.

../_images/rtx_material_omnisurfacebase_geometry_thin_walled_disabled.jpg
../_images/rtx_material_omnisurfacebase_geometry_thin_walled_enabled.jpg

Enable Opacity

Enables the use of opacity

Opacity

This parameter controls the travel of rays through the surface. At 0.0, the surface is invisible to the cameras, while at 1.0, it is completely opaque.

It can create render-time geometric detail on low-resolution and thin geometries.

Tip

Unlike transmission, renderers are optimized to use opacity to quickly skip over empty parts of a surface with a few operations.

../_images/rtx_material_omnisurfacebase_geometry_opacity_0p75.jpg
../_images/rtx_material_omnisurfacebase_geometry_opacity_0p5.jpg
../_images/rtx_material_omnisurfacebase_geometry_opacity_0p25.jpg
../_images/rtx_material_omnisurfacebase_geometry_opacity_wicker.jpg

Opacity Threshold

This parameter controls the opacity threshold. At a value lower or equal to the opacity map, the surface renders completely transparent. At a value greater than the opacity, the surface renders fully opaque.

Geometry Normal

This parameter replaces the surface geometric normal with the one evaluated from a map. “Geometry Normal” has no effects on the coating layer.

../_images/rtx_material_omnisurfacebase_geometry_normal_foil.jpg
../_images/rtx_material_omnisurfacebase_geometry_normal_gravel.jpg

Displacement

This parameter sets the direction and distance of position modification of the surface.

Important

This feature is not supported yet.

OmniSurfaceLiteBase is a subset of OmniSurfaceBase#

Parameters#

Base

The Base color of a surface before lighting calculations. Base represents only the pure color reflection of a surface, excluding lighting, shadows, or reflective properties.

Parameters
:align: center#

Display Name

Name

Type

Default

Weight

diffuse_reflection_weight

float

0.8

Color

diffuse_reflection_color

color

1.0, 1.0, 1.0

Diffuse Roughness

diffuse_reflection_roughness

float

0.0

Metalness

metalness

float

0.0

This layer models the base layer, a statistical mix between diffuse reflection and diffuse transmission components.

Weight

This parameter sets the weight of diffused reflection or metallic reflectance.

../_images/rtx_material_omnisurfacebase_diffuse_reflection_weight_0p0.jpg
../_images/rtx_material_omnisurfacebase_diffuse_reflection_weight_1p0.jpg

Color

This parameter sets diffuse reflection color of the dielectric surface or reflectance value of metallic surface by the probability that light is reflected or transmitted for each wavelength.

../_images/rtx_material_omnisurfacebase_diffuse_reflection_color_0p95_0p55_0p0.jpg
../_images/rtx_material_omnisurfacebase_diffuse_reflection_color_wood.jpg

Diffuse Roughness

Oren-Nayar surface roughness coefficient, simulating view-dependent diffuse reflection. At 0.0, the surface behaves similarly to a fully Lambertian reflection. Higher values are suitable for powdery surfaces like dust, sand, dried clay, concrete, etc.

../_images/rtx_material_omnisurfacebase_diffuse_reflection_roughness_0p0.jpg
../_images/rtx_material_omnisurfacebase_diffuse_reflection_roughness_0p5.jpg
../_images/rtx_material_omnisurfacebase_diffuse_reflection_roughness_1p0.jpg

Metalness

At 0.0, the material consists of a diffuse or transmissive base layer, with a specular reflection layer on top. When set to 1.0, the surface behaves like a metallic surface. For fully reflective metal, one can set the base weight and metalness to 1.0 and decrease specular reflection roughness to 0.0. Metalness values between 0.0 and 1.0 can create surfaces like oxidized copper when some surface areas are reflective, and some areas are not.

../_images/rtx_material_omnisurfacebase_metalness_0p0_scuffed_platinum.jpg
../_images/rtx_material_omnisurfacebase_metalness_0p5_scuffed_platinum.jpg
../_images/rtx_material_omnisurfacebase_metalness_1p0_scuffed_platinum.jpg
../_images/rtx_material_omnisurfacebase_metalness_1p0_painted_metal.jpg

The metallic reflection is modeled as a GGX microfacet conductor BRDF. The absorption coefficient and complex index of refraction are computed from the base color and the specular reflection color. The base color controls the metallic surface appearance, and specular reflection weight and specular reflection color parameters only affect the edge tint.

See Thin Film section for more information.

../_images/rtx_material_omnisurfacebase_metalness_nickel.jpg

Base Color: 0.649, 0.610, 0.541#

Specular Color: 0.797, 0.801, 0.789

../_images/rtx_material_omnisurfacebase_metalness_gold.jpg

Base Color: 0.944, 0.776, 0.373#

Specular Color: 0.998, 0.981, 0.751

../_images/rtx_material_omnisurfacebase_metalness_copper.jpg

Base Color: 0.926, 0.721, 0.504#

Specular Color: 0.996, 0.957, 0.823

Specular

The specular component controls direct surface reflections in materials. It simulates mirror-like behavior by defining reflection intensity, surface micro-roughness, and angle-dependent reflectivity (Fresnel effect).

Parameters

Display Name

Name

Type

Default

Weight

specular_reflection_weight

float

1.0

Color

specular_reflection_color

color

1.0, 1.0, 1.0

Roughness

specular_reflection_roughness

float

0.2

IOR Preset

specular_reflection_ior_preset

enum

ior_custom

IOR

specular_reflection_ior

float

1.5

Anisotropy

specular_reflection_anisotropy

float

0.0

Rotation (rad)

specular_reflection_anisotropy_rotation

float

0.0

This layer models a GGX microfacet dielectric BRDF under the coating layer. Due to Fresnel, this layer is not energy conversing. Thus the energy that is not reflected is transmitted to the underlying layers.

Weight

This parameter sets the amount of the specular reflection. Lowering this value increases light transmission through the object’s volume.

../_images/rtx_material_omnisurfacebase_specular_reflection_weight_0p0.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_weight_0p5.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_weight_1p0.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_weight_1p0_smudge.jpg

When Metalness is greater than 0.0, this parameter sets the edge tint weight for the metal surface.

../_images/rtx_material_omnisurfacebase_specular_reflection_weight_0p0_metalness_edge_tint.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_weight_0p5_metalness_edge_tint.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_weight_1p0_metalness_edge_tint.jpg

Color

This parameter sets the color of the specular reflection. While some metallic (conductor) surfaces have colored specular reflections, dielectric surfaces have only achromatic specular reflections.

../_images/rtx_material_omnisurfacebase_specular_reflection_color_1p0_1p0_1p0.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_color_0p0_0p7_1p0.jpg

Tip

Setting the specular reflection color for dielectric surfaces other than white is not physically correct.

When metalness is greater than 0.0, this parameter sets the edge tint color.

../_images/rtx_material_omnisurfacebase_specular_reflection_color_1p0_1p0_1p0_metalness.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_color_0p0_0p7_1p0_metalness.jpg

Roughness

This parameter sets the surface microfacet’s irregularities that cause light diffusion. At 0.0 simulates a perfect and smooth reflective surface, while increasing the value causes reflective highlights to diverge or appear blurred.

../_images/rtx_material_omnisurfacebase_specular_reflection_roughness_0p0.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_roughness_0p25.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_roughness_0p5.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_roughness_1p0.jpg

Roughness affects both specular reflection and specular transmission.

../_images/rtx_material_omnisurfacebase_specular_reflection_roughness_0p0_refraction.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_roughness_0p25_refraction.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_roughness_0p5_refraction.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_roughness_1p0_refraction.jpg

Tip

Roughness can create effects like torn surfaces, galvanized metal, or surfaces with fingerprints and smudges.

../_images/rtx_material_omnisurfacebase_specular_reflection_roughness_clay.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_roughness_galvanized.jpg

IOR Preset

This parameter presents a list of known IORs (index of refractions) for various materials, including glass, ice, diamond, skin. One can use custom IOR by setting this parameter to ior_custom and a value for the specular reflection’s IOR parameter.

IOR

This parameter sets IOR (index of refraction), which affects surface Fresnel reflectivity. The IOR defines the ratio between reflection on the surface front, facing the viewer, and the surface edges, facing away the viewer.

At values above 1.0, the reflection appears stronger on the surface edges and weaker on the surface front. At values less than 1.0, the Fresnel is disabled, and the specular reflection appears as a uniform highlight over the surface.

Tip

At high values, the surface will look similar to a metallic surface. If a metallic look is desired, the metalness parameter is encouraged instead since the range [0, 1] can be easily mapped with an input texture.

../_images/rtx_material_omnisurfacebase_specular_reflection_ior_1p0.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_ior_2p5.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_ior_5p0.jpg

IOR affects both the specular reflection and the specular transmission.

../_images/rtx_material_omnisurfacebase_specular_reflection_ior_1p0_refraction.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_ior_1p5_refraction.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_ior_2p5_refraction.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_ior_5p0_refraction.jpg

Anisotropy

This parameter sets the specular reflection anisotropy. Reflectance changes based on the surface orientation are called anisotropic. If the reflectance is uniform in all directions and does not change based on the surface’s rotation or orientation, it is isotropic.

At values above 0.0, the surface transmits and reflects incoming light with a directional bias. Thus it appears rougher in a specific direction.

../_images/rtx_material_omnisurfacebase_specular_reflection_anisotropy_0p0.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_anisotropy_0p5.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_anisotropy_1p0.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_anisotropy_pattern.jpg

Rotation (radians)

This parameter sets the orientation of the anisotropic effect in radians. At 1.0, the anisotropic effect is rotated by 180 degrees. For brushed metallic surfaces, the anisotropic effect should stretch out in a direction perpendicular to the brushing direction.

../_images/rtx_material_omnisurfacebase_specular_reflection_anisotropy_rotation_0p0.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_anisotropy_rotation_0p5.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_anisotropy_rotation_0p75.jpg
../_images/rtx_material_omnisurfacebase_specular_reflection_anisotropy_rotation_1p0.jpg
Coat

Coat simulates an additional transparent layer on top of a base material, common in automotive paints, polished wood, and plastic coatings. This layer adds a second specular reflection with its own roughness and intensity values, independent of the underlying material properties.

Parameters

Display Name

Name

Type

Default

Weight

coat_weight

float

0.0

Color

coat_color

color

1.0, 1.0, 1.0

Roughness

coat_roughness

float

0.1

IOR Preset

coat_ior_preset

enum

ior_custom

IOR

coat_ior

float

1.5

Anisotropy

coat_anisotropy

float

0.0

Rotation (rad)

coat_anisotropy_rotation

float

0.0

Affect Color

coat_affect_color

float

0.0

Affect Roughness

coat_affect_roughness

float

0.0

Normal

coat_normal

float3

state::normal()

This layer models GGX microfacet dielectric BRDF top coating. Due to Fresnel, this layer is not energy conserving. Thus the energy that is not reflected is transmitted to the underlying layers.

The coating simulates an infinitely thin shell dielectric layer, i.e., glass, enamel, lacquer, over the surface. It can create materials like metallic car paint, carbon fiber, oily skin, and wet asphalt.

Weight

This parameter sets the amount of surface coating. Lowering this value increases light transmission through the object’s volume.

Tip

For a realistic result, this parameter should be set to less than 1.0.

../_images/rtx_material_omnisurfacebase_coat_weight_0p0.jpg
../_images/rtx_material_omnisurfacebase_coat_weight_0p5.jpg
../_images/rtx_material_omnisurfacebase_coat_weight_1p0.jpg

Color

This parameter tints all layers below the coating layer. In the real world, lights scattered by underlying layers are tinted when transmitted through the colored coating.

../_images/rtx_material_omnisurfacebase_coat_color_no_coat.jpg

Coat Weight: 0.0#

../_images/rtx_material_omnisurfacebase_coat_color_white.jpg

Coat Weight: 1.0#

../_images/rtx_material_omnisurfacebase_coat_color_green.jpg

Coat Weight: 1.0#

This parameter emulates the effect of absorption within the coating medium.

../_images/rtx_material_omnisurfacebase_coat_color_white_base_no_coat.jpg

Base Color: White#

../_images/rtx_material_omnisurfacebase_coat_color_white_base_cyan_coat.jpg

Base Color: White#

../_images/rtx_material_omnisurfacebase_coat_color_yellow_base_no_coat.jpg

Base Color: Yellow#

../_images/rtx_material_omnisurfacebase_coat_color_yellow_base_cyan_coat.jpg

Base Color: Yellow#

Note

The reflection color is set to white for this layer.

Roughness

This parameter sets the surface microfacet’s irregularities that cause light diffusion. At 0.0 simulates a perfect and smooth reflective surface, while increasing the value causes reflective highlights to diverge or appear blurred.

Tip

Roughness can be used to create effects like torn surfaces or surfaces with fingerprints and smudges.

../_images/rtx_material_omnisurfacebase_coat_roughness_0p0.jpg
../_images/rtx_material_omnisurfacebase_coat_roughness_0p5.jpg
../_images/rtx_material_omnisurfacebase_coat_roughness_0p75.jpg
../_images/rtx_material_omnisurfacebase_coat_roughness_texture.jpg

IOR Preset

This parameter presents a list of known IORs (index of refractions) for various materials, including glass, ice, diamond, skin. One can use custom IOR by setting this parameter to ior_custom and a value for the specular reflection’s IOR parameter.

IOR

This parameter sets IOR (index of refraction), which affects surface Fresnel reflectivity. The IOR defines the ratio between reflection on the surface front, facing the viewer, and the surface edges, facing away the viewer.

At values above 1.0, the reflection appears stronger on the surface edges and weaker on the surface front. At values less than 1.0, the Fresnel is disabled, and the coating appears as a uniform highlight over the surface.

../_images/rtx_material_omnisurfacebase_coat_ior_1p0.jpg
../_images/rtx_material_omnisurfacebase_coat_ior_1p52.jpg
../_images/rtx_material_omnisurfacebase_coat_ior_5p0.jpg

Anisotropy

his parameter sets the specular reflection anisotropy. Reflectance changes based on the surface orientation are called anisotropic. If the reflectance is uniform in all directions and does not change based on the surface’s rotation or orientation, it is isotropic.

At values above 0.0, the surface transmits and reflects incoming light with a directional bias. Thus it appears rougher in a specific direction.

../_images/rtx_material_omnisurfacebase_coat_anisotropy_0p0.jpg
../_images/rtx_material_omnisurfacebase_coat_anisotropy_0p5.jpg
../_images/rtx_material_omnisurfacebase_coat_anisotropy_1p0.jpg

Rotation (radian)

This parameter sets the orientation of the anisotropic effect in radians. At 1.0, the anisotropic effect is rotated by 180 degrees. For brushed surfaces, the anisotropic effect should stretch out in a direction perpendicular to the brushing direction.

../_images/rtx_material_omnisurfacebase_coat_anisotropy_rotation_0p5.jpg
../_images/rtx_material_omnisurfacebase_coat_anisotropy_rotation_0p65.jpg
../_images/rtx_material_omnisurfacebase_coat_anisotropy_rotation_0p75.jpg

Affect Color

This parameter controls the saturation of diffuse reflection and subsurface under the coating layer.

In the real world, refracted rays exhibit internal reflection within the coating medium, which can go back down to the underlying surface to reflect again, thus making the surface more saturated and darker. Affect Color can be used to emulate this effect. At 0.0, this parameter has no effects.

../_images/rtx_material_omnisurfacebase_coat_affect_color_no_coat.jpg
../_images/rtx_material_omnisurfacebase_coat_affect_color_0p0.jpg
../_images/rtx_material_omnisurfacebase_coat_affect_color_1p0.jpg

Affect Roughness

This parameter controls the roughness of the specular reflection, and specular transmission under the coating layer.

In the real world, refracted rays exhibit internal reflection within the coating medium, which can go back down to the underlying surface, which may scatter due to the roughness of the undercoating surface. Affect Roughness can be used to emulate this effect. At 0.0, this parameter has no effects.

../_images/rtx_material_omnisurfacebase_coat_affect_roughness_base.jpg

Specular Reflection Weight: 1.0#

Specular Reflection Roughness: 0.0

../_images/rtx_material_omnisurfacebase_coat_affect_roughness_coat.jpg

Coat Weight: 1.0#

Coat Roughness: 0.5

../_images/rtx_material_omnisurfacebase_coat_affect_roughness_0p0.jpg

Coat Affect Roughness: 0.0#

../_images/rtx_material_omnisurfacebase_coat_affect_roughness_1p0.jpg

Coat Affect Roughness: 1.0#

../_images/rtx_material_omnisurfacebase_coat_affect_roughness_specular_transmission_base.jpg
../_images/rtx_material_omnisurfacebase_coat_affect_roughness_coat.jpg
../_images/rtx_material_omnisurfacebase_coat_affect_roughness_1p0_specular_transmission.jpg

Normal

This parameter sets the “normal direction” for the coating layer, which affects the Fresnel blending of the coating layer over the surface. The coat normal can create surface effects like raindrops, imperfections in car paint, or glazing on the food.

Note

The “coat normal” only affects the coating layer and has no effects on the underlying surface normal.

../_images/rtx_material_omnisurfacebase_coat_normal_droplets.jpg
../_images/rtx_material_omnisurfacebase_coat_normal_scratches.jpg
Emission

Emissivity defines how much light a surface emits independently of received light. This parameter creates self-illuminating effects like neon signs, screens, or bioluminescence materials. Emissivity maintains physical accuracy by contributing to scene lighting and global illumination calculations.

Parameters

Display Name

Name

Type

Default

Weight

emission_weight

float

0.0

Emission Mode

emission_mode

enum

emission_lx

Intensity

emission_intensity

float

1.0

Color

emission_color

color

1.0, 1.0, 1.0

Use Temperature

emission_use_temperature

bool

false

Temperature

emission_temperature

float

6500.0

This layer adds directionally uniform EDF under the coating layer, which describes the light-emitting properties of the surface.

It can create materials like an incandescent light-bulb, glowing lava, and LED panel.

Note

In the RTX – Interactive (Path Tracing) mode, to reduce the noise in the indirectly lit area using emissive materials, one may need to increase the Total Samples per Pixel.

Please see RTX Interactive (Path Tracing) mode render settings for more information.

../_images/rtx_material_omnisurfacebase_emission_tspp_8.jpg
../_images/rtx_material_omnisurfacebase_emission_tspp_32.jpg
../_images/rtx_material_omnisurfacebase_emission_tspp_128.jpg
../_images/rtx_material_omnisurfacebase_emission_tspp_512.jpg

Weight

This parameter sets the amount of light emission from the surface.

../_images/rtx_material_omnisurfacebase_emission_weight_0p0.jpg
../_images/rtx_material_omnisurfacebase_emission_weight_0p5.jpg
../_images/rtx_material_omnisurfacebase_emission_weight_0p75.jpg
../_images/rtx_material_omnisurfacebase_emission_weight_1p0.jpg

Emission Mode

This parameter specifies the physical units to use for the emission intensity.

1. “Nit” is the unit of luminance and describes the surface power of a visible light source. The overall illumination of the scene changes depends on the size of the light source.

One nit is equal to one candela per square meter. 1 nit = 1 cd/m^2

The candela per square meter is the base unit of luminance. Candela is the base unit for luminous intensity.

A light source that emits one candela of luminous intensity onto an area of one square meter has a luminance of one candela per square meter or one nit. As an example, a calibrated monitor has a brightness of 120 cd/m^2 or 120 nits.

2. “Lux” is the unit of illuminance and describes the total amount of visible light that a light source emits. The overall illumination of the scene does not change depending on the size of the light source.

One lux is equal to one lumen per square meter. 1 lux = 1 lm/m^2

A light source that emits one candela of luminous intensity from an area of one steradian has a luminous flux of one lumen.

A light source that emits one lumen of luminous flux onto an area of one square meter has an illuminance of one lux. As an example, very bright sunlight has a brightness of 120,000 lux.

Intensity

This parameter sets the emission intensity. The emission mode parameter sets the physical unit for this parameter.

A few examples of illuminance under various lighting conditions:

Lighting Condition

Illuminance (lx)

Sunlight

100,000 - 120,000

Daylight

10,000 - 25,000

Overcast

1000

Twilight

10

Full moon

0.05 – 0.3

Ceiling lamp

400 - 800

Table lamp

200 - 300

Candle light

12.57

Color

This parameter sets the emission color.

../_images/rtx_material_omnisurfacebase_emission_color_rainbow.jpg
../_images/rtx_material_omnisurfacebase_emission_color_lava.jpg

Use Temperature

Enable the use of color temperature value instead of color.

Note

This parameter will override the default emission color, including any textures assigned to the emission color parameter.

Temperature (Kelvin)

This parameter specifies emission color using a color temperature in the Kelvin unit. Lower values are warmer, i.e., redder, while higher values are cooler, i.e., bluer. The default value of 6500K is close to D65 illuminant, the white point in sRGB and Rec. 709 color spaces.

../_images/rtx_material_omnisurfacebase_emission_color_temp_3200.jpg
../_images/rtx_material_omnisurfacebase_emission_color_temp_5000.jpg
../_images/rtx_material_omnisurfacebase_emission_color_temp_6500.jpg
Geometry

The geometry section defines how special surface effects are calculated relative to the underlying 3D geometry. These parameters control backface visibility, opacity thresholds, thin-film effects, and depth-based adjustments like opacity attenuation.

Parameters

Display Name

Name

Type

Default

Thin Walled

thin_walled

bool

false

Enable Opacity

enable_opacity

bool

false

Opacity

geometry_opacity

float

1.0

Opacity Threshold

geometry_opacity_threshold

float

0.0

Geometry Normal

geometry_normal

float3

state::normal()

Displacement

geometry_displacement

float3

0.0, 0.0, 0.0

Thin Walled

This parameter sets the surface as an infinitely thin double-sided shell with a refraction index of the surrounding medium, so refracted rays exit immediately instead of entering the medium.

Thin-walled is ideal for geometrically thin objects, like a sheet of paper, soap bubble, and leaves.

Note

“Dispersion” has no effects when Thin-Walled enabled.

../_images/rtx_material_omnisurfacebase_thin_walled_disabled_bubble.jpg
../_images/rtx_material_omnisurfacebase_thin_walled_enabled_bubble.jpg

Tip

When Thin-Walled is enabled, “subsurface” is represented as the diffuse transmission of the light through an infinitely thin shell, i.e., translucence.

../_images/rtx_material_omnisurfacebase_geometry_thin_walled_disabled.jpg
../_images/rtx_material_omnisurfacebase_geometry_thin_walled_enabled.jpg

Enable Opacity

Enables the use of opacity

Opacity

This parameter controls the travel of rays through the surface. At 0.0, the surface is invisible to the cameras, while at 1.0, it is completely opaque.

It can create render-time geometric detail on low-resolution and thin geometries.

Tip

Unlike transmission, renderers are optimized to use opacity to quickly skip over empty parts of a surface with a few operations.

../_images/rtx_material_omnisurfacebase_geometry_opacity_0p75.jpg
../_images/rtx_material_omnisurfacebase_geometry_opacity_0p5.jpg
../_images/rtx_material_omnisurfacebase_geometry_opacity_0p25.jpg
../_images/rtx_material_omnisurfacebase_geometry_opacity_wicker.jpg

Opacity Threshold

This parameter controls the opacity threshold. At a value lower or equal to the opacity map, the surface renders completely transparent. At a value greater than the opacity, the surface renders fully opaque.

Geometry Normal

This parameter replaces the surface geometric normal with the one evaluated from a map. “Geometry Normal” has no effects on the coating layer.

../_images/rtx_material_omnisurfacebase_geometry_normal_foil.jpg
../_images/rtx_material_omnisurfacebase_geometry_normal_gravel.jpg

Displacement

This parameter sets the direction and distance of position modification of the surface.

Important

This feature is not supported yet.

Note

The non base materials provide additional parameters for direct texture mapping control. The following shows

a generic example.

  • Image: Path to a valid color or grayscale image in a supported format.

  • Weight: Scalar value defining the Image contribution.

  • Weight Image: A texture map defining the Image contribution, multiplied by the Weight parameter.

  • Alpha Mode: If the Mappable parameter is of type float, this dropdown will determine how to utilize the Image.

Valid Opacity Map Mono Source Values
Specifies opacity channel or evaluation of the map for opacity.
  • mono_alpha : Uses the alpha channel of the image as the source for evaluation.

  • mono_average : Uses the average of the RGB channels as the source for evaluation.

  • mono_luminance : Uses the luminance of the image as the source for evaluation.

  • mono_maximum : Uses the max value of the RGB channels as the source for evaluation.