PYTHON API

Core Functions

omni.replicator.core.get_global_seed()

Return global seed value

Returns

(int)seed value

omni.replicator.core.set_global_seed(seed: int)

Set a global seed.

Parameters

seed – Seed to use as initialization for the pseudo-random number generator. Seed is expected to be a non-negative integer.

omni.replicator.core.new_layer(name: str = None)

Create a new authoring layer context. Use new_layer to keep replicator changes into a contained layer. If a layer of the same name already exists, the layer will be cleared before new changes are applied.

Parameters

name – Name of the layer to be created. If ommitted, the name “Replicator” is used.

Example

>>> import omni.replicator.core as rep
>>> with rep.new_layer():
>>>     rep.create.cone(count=100, position=rep.distribution.uniform((-100,-100,-100),(100,100,100)))
omni.replicator.core.open_stage(stage_path: Union[str, Path, usdrt.Sdf.Path]) Stage

Helper method to open a new stage from a Usd file

Parameters

stage_path – File path to the stage to load

Create

create methods are helpers to put objects onto the USD stage.

omni.replicator.core.create.render_product(camera: Union[ReplicatorItem, str, List[str], Path, List[Path]], resolution: Tuple[int, int], force_new: bool = False, name: Optional[Union[str, List[str]]] = None) Union[str, List]

Create a render product A RenderProduct describes images or other file-like artifacts produced by a render, such as rgb (LdrColor), normals, depth, etc. If an existing render product exists that have the same resolution and camera attached, it is returned. If no matching render product is found or if force_new is set to True, a new render product is created.

Note: When using Viewport 2.0, viewports are not generated to draw the render product on screen. Note: Render products can utilize a large amount of VRAM. Render Products no longer in use should be destroyed.

Parameters
  • camera – The camera to attach to the render product. If a list of cameras is provided, a list of render products is created.

  • resolution – (width, height) resolution of the render product

  • force_new – If True, force creation of a new render product. If False, existing render products will be re-used if currently assigned to same camera and of the same resolution. Is overriden to True if a name is provided.

  • name – Optionally specify the name(s) of the render product(s). Name must produce a valid USD path. If no name is provided, defaults to Replicator. The render product will be created at the following path within the Session Layer: /Render/OmniverseKit/HydraTextures/<name>. If multiple cameras are provided or if a render product of the specified name already exists, a _<num> suffix is added starting at _01. If specifying unique names for multiple cameras, name can be supplied as a list of strings of the same length as camera.

Example

>>> import omni.replicator.core as rep
>>> render_product = rep.create.render_product(rep.create.camera(), resolution=(1024, 1024), name="MyRenderProduct")
omni.replicator.core.create.register(fn: Callable[[...], Union[ReplicatorItem, Node]], override: bool = True, fn_name: Optional[str] = None) None

Register a new function under omni.replicator.core.create. Extend the default capabilities of omni.replicator.core.create by registering new functionality. New functions must return a ReplicatorItem or an OmniGraph node.

Parameters
  • fn – A function that returns a ReplicatorItem or an OmniGraph node.

  • override – If True, will override existing functions of the same name. If False, an error is raised.

  • fn_name – Optional, specify the registration name. If not specified, the function name is used. fn_name must only contains alphanumeric letters (a-z), numbers (0-9), or underscores (_), and cannot start with a number or contain any spaces.

Example

>>> import omni.replicator.core as rep
>>> def light_cluster(num_lights: int = 10):
...     lights = rep.create.light(
...         light_type="sphere",
...         count=num_lights,
...         position=rep.distribution.uniform((-500, -500, -500), (500, 500, 500)),
...         intensity=rep.distribution.uniform(10000, 20000),
...         temperature=rep.distribution.uniform(1000, 10000),
...     )
...     return lights
>>> rep.create.register(light_cluster)
>>> lights = rep.create.light_cluster(50)

Lights

omni.replicator.core.create.light(position: Union[ReplicatorItem, float, Tuple[float]] = None, scale: Union[ReplicatorItem, float, Tuple[float]] = None, rotation: Union[ReplicatorItem, float, Tuple[float]] = None, look_at: Union[ReplicatorItem, str, Path, usdrt.Sdf.Path, Tuple[float, float, float], List[Union[str, Path, usdrt.Sdf.Path]]] = None, look_at_up_axis: Union[ReplicatorItem, Tuple[float]] = None, light_type: str = 'Distant', color: Union[ReplicatorItem, Tuple[float, float, float]] = (1.0, 1.0, 1.0), intensity: Union[ReplicatorItem, float] = 1000.0, exposure: Union[ReplicatorItem, float] = None, temperature: Union[ReplicatorItem, float] = 6500, texture: Union[ReplicatorItem, str] = None, count: int = 1, name: str = None, parent: Union[ReplicatorItem, str, Path, Prim] = None) ReplicatorItem

Create a light

Parameters
  • position – XYZ coordinates in world space. If a single value is provided, all axes will be set to that value. Ignored for dome and distant light types.

  • scale – Scaling factors for XYZ axes. If a single value is provided, all axes will be set to that value. Ignored for dome and distant light types.

  • rotation – Euler angles in degrees in XYZ order. If a single value is provided, all axes will be set to that value.

  • look_at – Look-at target, specified either as a ReplicatorItem, a prim path, or world coordinates. If multiple prims are set, the target point will be the mean of their positions.

  • look_at_up_axis – Look-at up axis of the created prim.

  • light_type – Light type. Select from [“cylinder”, “disk”, “distant”, “dome”, “rect”, “sphere”]

  • color – Light color in (R,G,B). Float values from [0.0-1.0]

  • intensity – Light intensity. Scales the power of the light linearly.

  • exposure – Scales the power of the light exponentially as a power of 2. The result is multiplied with intensity.

  • temperature – Color temperature in degrees Kelvin indicating the white point. Lower values are warmer, higher values are cooler. Valid range [1000-10000].

  • texture – Image texture to use for dome light such as an HDR (High Dynamic Range) intended for IBL (Image Based Lighting). Ignored for other light types.

  • count – Number of objects to create.

  • name – Name of the light.

  • parent – Optional parent prim path. The object will be created as a child of this prim.

Examples

>>> import omni.replicator.core as rep
>>> distance_light = rep.create.light(
... rotation=rep.distribution.uniform((0,-180,-180), (0,180,180)),
... intensity=rep.distribution.normal(10000, 1000),
... temperature=rep.distribution.normal(6500, 1000),
... light_type="distant")
>>> dome_light = rep.create.light(
... rotation=rep.distribution.uniform((0,-180,-180), (0,180,180)),
... texture=rep.distribution.choice(rep.example.TEXTURES),
... light_type="dome")

Misc

omni.replicator.core.create.group(items: List[Union[ReplicatorItem, str, Path]], semantics: List[Tuple[str, str]] = None, name=None) ReplicatorItem

Group assets into a common node. Grouping assets makes it easier and faster to apply randomizations to multiple assets simultaneously.

Parameters
  • items – Assets to be grouped together.

  • semantics – List of semantic type-label pairs.

  • name (optional) – A name for the given group node

Example

>>> import omni.replicator.core as rep
>>> cones = [rep.create.cone() for _ in range(100)]
>>> group = rep.create.group(cones, semantics=[("class", "cone")])

Cameras

omni.replicator.core.create.camera(position: Union[ReplicatorItem, float, Tuple[float]] = None, rotation: Union[ReplicatorItem, float, Tuple[float]] = None, look_at: Union[ReplicatorItem, str, Path, usdrt.Sdf.Path, Tuple[float, float, float], List[Union[str, Path, usdrt.Sdf.Path]]] = None, look_at_up_axis: Union[ReplicatorItem, Tuple[float]] = None, focal_length: Union[ReplicatorItem, float] = 24.0, focus_distance: Union[ReplicatorItem, float] = 400.0, f_stop: Union[ReplicatorItem, float] = 0.0, horizontal_aperture: Union[ReplicatorItem, float] = 20.955, horizontal_aperture_offset: Union[ReplicatorItem, float] = 0.0, vertical_aperture_offset: Union[ReplicatorItem, float] = 0.0, clipping_range: Union[ReplicatorItem, Tuple[float, float]] = (1.0, 1000000.0), projection_type: Union[ReplicatorItem, str] = 'pinhole', fisheye_nominal_width: Union[ReplicatorItem, float] = 1936.0, fisheye_nominal_height: Union[ReplicatorItem, float] = 1216.0, fisheye_optical_centre_x: Union[ReplicatorItem, float] = 970.94244, fisheye_optical_centre_y: Union[ReplicatorItem, float] = 600.37482, fisheye_max_fov: Union[ReplicatorItem, float] = 200.0, fisheye_polynomial_a: Union[ReplicatorItem, float] = 0.0, fisheye_polynomial_b: Union[ReplicatorItem, float] = 0.00245, fisheye_polynomial_c: Union[ReplicatorItem, float] = 0.0, fisheye_polynomial_d: Union[ReplicatorItem, float] = 0.0, fisheye_polynomial_e: Union[ReplicatorItem, float] = 0.0, fisheye_polynomial_f: Union[ReplicatorItem, float] = 0.0, fisheye_p0: Union[ReplicatorItem, float] = -0.00037, fisheye_p1: Union[ReplicatorItem, float] = -0.00074, fisheye_s0: Union[ReplicatorItem, float] = -0.00058, fisheye_s1: Union[ReplicatorItem, float] = -0.00022, fisheye_s2: Union[ReplicatorItem, float] = 0.00019, fisheye_s3: Union[ReplicatorItem, float] = -0.0002, cross_camera_reference_name: str = None, count: int = 1, parent: Union[ReplicatorItem, str, Path, Prim] = None, name: str = None) ReplicatorItem

Create a camera

Parameters
  • position – XYZ coordinates in world space. If a single value is provided, all axes will be set to that value.

  • rotation – Euler angles in degrees in XYZ order. If a single value is provided, all axes will be set to that value.

  • look_at – Look-at target, specified either as a ReplicatorItem, a prim path, or world coordinates. If multiple prims are set, the target point will be the mean of their positions.

  • look_at_up_axis – Look-at up axis of the created prim.

  • focal_length – Physical focal length of the camera in units equal to 0.1 * world units.

  • focus_distance – Distance from the camera to the focus plane in world units.

  • f_stop – Lens aperture. Default 0.0 turns off focusing.

  • horizontal_aperture – Horizontal aperture in units equal to 0.1 * world units. Default simulates a 35mm spherical projection aperture.

  • horizontal_aperture_offset – Horizontal aperture offset in units equal to 0.1 * world units.

  • vertical_aperture_offset – Vertical aperture offset in units equal to 0.1 * world units.

  • clipping_range – (Near, Far) clipping distances of the camera in world units.

  • projection_type – Camera projection model. Select from [“pinhole”, “fisheye_polynomial”, “fisheyeOrthographic”, “fisheyeEquidistant”, “fisheyeEquisolid”, “fisheyeSpherical”, “fisheyeKannalaBrandtK3”, “fisheyeRadTanThinPrism”].

  • fisheye_nominal_width – Nominal width of fisheye lens model.

  • fisheye_nominal_height – Nominal height of fisheye lens model.

  • fisheye_optical_centre_x – Horizontal optical centre position of fisheye lens model.

  • fisheye_optical_centre_y – Vertical optical centre position of fisheye lens model.

  • fisheye_max_fov – Maximum field of view of fisheye lens model.

  • fisheye_polynomial_a – First polynomial coefficient of fisheye camera.

  • fisheye_polynomial_b – Second polynomial coefficient of fisheye camera.

  • fisheye_polynomial_c – Third polynomial coefficient of fisheye camera.

  • fisheye_polynomial_d – Fourth polynomial coefficient of fisheye camera.

  • fisheye_polynomial_e – Fifth polynomial coefficient of fisheye camera.

  • fisheye_polynomial_f – Sixth polynomial coefficient of fisheye camera.

  • fisheye_p0 – Distortion coefficient to calculate tangential distortion for rad tan thin prism camera.

  • fisheye_p1 – Distortion coefficient to calculate tangential distortion for rad tan thin prism camera.

  • fisheye_s0 – Distortion coefficient to calculate thin prism distortion for rad tan thin prism camera.

  • fisheye_s1 – Distortion coefficient to calculate thin prism distortion for rad tan thin prism camera.

  • fisheye_s2 – Distortion coefficient to calculate thin prism distortion for rad tan thin prism camera.

  • fisheye_s3 – Distortion coefficient to calculate thin prism distortion for rad tan thin prism camera.,

  • count – Number of objects to create.

  • parent – Optional parent prim path. The camera will be created as a child of this prim.

  • name – Name of the camera

Example

>>> import omni.replicator.core as rep
>>> # Create camera
>>> camera = rep.create.camera(
...     position=rep.distribution.uniform((0,0,0), (100, 100, 100)),
...     rotation=(45, 45, 0),
...     focus_distance=rep.distribution.normal(400.0, 100),
...     f_stop=1.8,
... )
>>> # Attach camera to render product
>>> render_product = rep.create.render_product(camera, resolution=(1024, 1024))
omni.replicator.core.create.stereo_camera(stereo_baseline: Union[ReplicatorItem, float], position: Optional[Union[ReplicatorItem, float, Tuple[float]]] = None, rotation: Optional[Union[ReplicatorItem, float, Tuple[float]]] = None, look_at: Optional[Union[ReplicatorItem, str, Path, usdrt.Sdf.Path, Tuple[float, float, float], List[Union[str, Path, usdrt.Sdf.Path]]]] = None, look_at_up_axis: Optional[Union[ReplicatorItem, Tuple[float]]] = None, focal_length: Union[ReplicatorItem, float] = 24.0, focus_distance: Union[ReplicatorItem, float] = 400.0, f_stop: Union[ReplicatorItem, float] = 0.0, horizontal_aperture: Union[ReplicatorItem, float] = 20.955, horizontal_aperture_offset: Union[ReplicatorItem, float] = 0.0, vertical_aperture_offset: Union[ReplicatorItem, float] = 0.0, clipping_range: Union[ReplicatorItem, Tuple[float, float]] = (1.0, 1000000.0), projection_type: Union[ReplicatorItem, str] = 'pinhole', fisheye_nominal_width: Union[ReplicatorItem, float] = 1936.0, fisheye_nominal_height: Union[ReplicatorItem, float] = 1216.0, fisheye_optical_centre_x: Union[ReplicatorItem, float] = 970.94244, fisheye_optical_centre_y: Union[ReplicatorItem, float] = 600.37482, fisheye_max_fov: Union[ReplicatorItem, float] = 200.0, fisheye_polynomial_a: Union[ReplicatorItem, float] = 0.0, fisheye_polynomial_b: Union[ReplicatorItem, float] = 0.00245, fisheye_polynomial_c: Union[ReplicatorItem, float] = 0.0, fisheye_polynomial_d: Union[ReplicatorItem, float] = 0.0, fisheye_polynomial_e: Union[ReplicatorItem, float] = 0.0, fisheye_polynomial_f: Union[ReplicatorItem, float] = 0.0, fisheye_p0: Union[ReplicatorItem, float] = -0.00037, fisheye_p1: Union[ReplicatorItem, float] = -0.00074, fisheye_s0: Union[ReplicatorItem, float] = -0.00058, fisheye_s1: Union[ReplicatorItem, float] = -0.00022, fisheye_s2: Union[ReplicatorItem, float] = 0.00019, fisheye_s3: Union[ReplicatorItem, float] = -0.0002, count: int = 1, name: Optional[str] = None, parent: Optional[Union[ReplicatorItem, str, Path, Prim]] = None) ReplicatorItem

Create a stereo camera pair.

Parameters
  • stereo_baseline – Distance between stereo camera pairs.

  • position – XYZ coordinates in world space. If a single value is provided, all axes will be set to that value.

  • rotation – Euler angles in degrees in XYZ order. If a single value is provided, all axes will be set to that value.

  • look_at – Look-at target, specified either as a ReplicatorItem, a prim path or as coordinates. If multiple prims are set, the target point will be the mean of their positions.

  • look_at_up_axis – Look-at up axis of the created prim.

  • focal_length – Physical focal length of the camera in units equal to 0.1 * world units.

  • focus_distance – Distance from the camera to the focus plane in world units.

  • f_stop – Lens aperture. Default 0.0 turns off focusing.

  • horizontal_aperture – Horizontal aperture in units equal to 0.1 * world units. Default simulates a 35mm spherical projection aperture.

  • horizontal_aperture_offset – Horizontal aperture offset in units equal to 0.1 * world units.

  • vertical_aperture_offset – Vertical aperture offset in units equal to 0.1 * world units.

  • clipping_range – (Near, Far) clipping distances of the camera in world units.

  • projection_type – Camera projection model. Select from [“pinhole”, “fisheye_polynomial”, “fisheyeOrthographic”, “fisheyeEquidistant”, “fisheyeEquisolid”, “fisheyeSpherical”, “fisheyeKannalaBrandtK3”, “fisheyeRadTanThinPrism”].

  • fisheye_nominal_width – Nominal width of fisheye lens model.

  • fisheye_nominal_height – Nominal height of fisheye lens model.

  • fisheye_optical_centre_x – Horizontal optical centre position of fisheye lens model.

  • fisheye_optical_centre_y – Vertical optical centre position of fisheye lens model.

  • fisheye_max_fov – Maximum field of view of fisheye lens model.

  • fisheye_polynomial_a – First component of fisheye polynomial (only valid for fisheye_polynomial projection type).

  • fisheye_polynomial_b – Second component of fisheye polynomial (only valid for fisheye_polynomial projection type).

  • fisheye_polynomial_c – Third component of fisheye polynomial (only valid for fisheye_polynomial projection type).

  • fisheye_polynomial_d – Fourth component of fisheye polynomial (only valid for fisheye_polynomial projection type).

  • fisheye_polynomial_e – Fifth component of fisheye polynomial (only valid for fisheye_polynomial projection type).

  • count – Number of objects to create.

  • name – Name of the cameras. _L and _R will be appended for Left and Right cameras, respectively.

  • parent – Optional parent prim path. The cameras will be created as a child of this prim.

Example

>>> import omni.replicator.core as rep
>>> # Create stereo camera
>>> stereo_camera_pair = rep.create.stereo_camera(
...     stereo_baseline=10,
...     position=(10, 10, 10),
...     rotation=(45, 45, 0),
...     focus_distance=rep.distribution.normal(400.0, 100),
...     f_stop=1.8,
... )
>>> # Attach camera to render product
>>> render_product = rep.create.render_product(stereo_camera_pair, resolution=(1024, 1024))

Materials

omni.replicator.core.create.material_omnipbr(diffuse: Tuple[float] = None, diffuse_texture: str = None, roughness: float = None, roughness_texture: str = None, metallic: float = None, metallic_texture: str = None, specular: float = None, emissive_color: Tuple[float] = None, emissive_texture: str = None, emissive_intensity: float = 0.0, project_uvw: bool = False, semantics: List[Tuple[str, str]] = None, count: int = 1) ReplicatorItem

Create an OmniPBR Material

Parameters
  • diffuse – Diffuse/albedo color in RGB colorspace

  • diffuse_texture – Path to diffuse texture

  • roughness – Material roughness in the range [0, 1]

  • roughness_texture – Path to roughness texture

  • metallic – Material metallic value in the range [0, 1]. Typically, metallic is assigned either 0.0 or 1.0

  • metallic_texture – Path to metallic texture

  • specular – Intensity of specular reflections in the range [0, 1]

  • emissive_color – Color of emissive light emanating from material in RGB colorspace

  • emissive_texture – Path to emissive texture

  • emissive_intensity – Emissive intensity of the material. Setting to 0.0 (default) disables emission.

  • project_uvw – When True, UV coordinates will be generated by projecting them from a coordinate system.

  • semantics – Assign semantics to material

  • count – Number of objects to create.

Example

>>> import omni.replicator.core as rep
>>> mat1 = rep.create.material_omnipbr(
...    diffuse=rep.distribution.uniform((0, 0, 0), (1, 1, 1)),
...    roughness=rep.distribution.uniform(0, 1),
...    metallic=rep.distribution.choice([0, 1]),
...    emissive_color=rep.distribution.uniform((0, 0, 0.5), (0, 0, 1)),
...    emissive_intensity=rep.distribution.uniform(0, 1000),
... )
>>> mat2 = rep.create.material_omnipbr(
...    diffuse_texture=rep.distribution.choice(rep.example.TEXTURES),
...    roughness_texture=rep.distribution.choice(rep.example.TEXTURES),
...    metallic_texture=rep.distribution.choice(rep.example.TEXTURES),
...    emissive_texture=rep.distribution.choice(rep.example.TEXTURES),
...    emissive_intensity=rep.distribution.uniform(0, 1000),
... )
>>> cone = rep.create.cone(material=mat1)
>>> torus = rep.create.torus(material=mat2)
omni.replicator.core.create.projection_material(proxy_prim: Union[ReplicatorItem, str, Path], semantics: List[Tuple[str, str]] = None, material: Union[ReplicatorItem, str, Path] = None, offset_scale: float = 0.01, input_prims: Union[ReplicatorItem, List[str]] = None, name: Optional[str] = None) ReplicatorItem

Project a texture onto a target prim.

ProjectPBRMaterial is used to facilitate these projections. The proxy prim is a prim used to control the position, rotation and scale of the projection. There can only be one proxy/projection pair, so a proxy prim can only modify a single projection. The projection will happen in the direction of the negative x-axis. This node only sets up the projection material, the rep.modify.projection_material node should be used to update the projection itself.

Parameters
  • proxy_prim – The prims which will be used to manipulate the projection.

  • material – Projection material to apply to the projection. If not provided, use ‘ProjectPBRMaterial’.

  • semantics – Semantics to apply to the defect.

  • offset_scale – Scale factor when extruding target_prim points.

  • input_prims – The prim which will be projected on to. If using with syntax, this argument can be omitted.

  • name (optional) – A name for the given projection node.

Example

>>> import omni.replicator.core as rep
>>> torus = rep.create.torus()
>>> cube = rep.create.cube(position=(50, 100, 0), rotation=(0, 0, 90), scale=(0.2, 0.2, 0.2))
>>> sem = [('class', 'shape')]
>>> with torus:
...     rep.create.projection_material(cube, sem)
omni.replicator.core.create.projection_material
omni.replicator.core.create.mdl_from_json(material_def: Dict = None, material_def_path: str = None) ReplicatorItem

Create a MDL ShaderGraph material defined in a json dictionary.

Parameters
  • material_def – A dictionary object defining the MDL material graph.

  • material_def_path – A path to a json file to decode and generate an MDL material graph from.

Example

>>> import omni.replicator.core as rep
>>> gen_mat = rep.create.mdl_from_json(material_def=rep.example.MDL_JSON_EXAMPLE)
>>> cube = rep.create.cube(material=gen_mat)

Shapes

omni.replicator.core.create.cone(position: Union[ReplicatorItem, float, Tuple[float]] = None, scale: Union[ReplicatorItem, float, Tuple[float]] = None, pivot: Union[ReplicatorItem, Tuple[float]] = None, rotation: Union[ReplicatorItem, float, Tuple[float]] = None, look_at: Union[ReplicatorItem, str, Path, usdrt.Sdf.Path, Tuple[float, float, float], List[Union[str, Path, usdrt.Sdf.Path]]] = None, look_at_up_axis: Union[ReplicatorItem, Tuple[float]] = None, semantics: List[Tuple[str, str]] = None, material: Union[ReplicatorItem, Prim] = None, visible: bool = True, as_mesh: bool = True, count: int = 1, name: str = None, parent: Union[ReplicatorItem, str, Path, Prim] = None) ReplicatorItem

Create a cone

Parameters
  • position – XYZ coordinates in world space. If a single value is provided, all axes will be set to that value.

  • scale – Scaling factors for XYZ axes. If a single value is provided, all axes will be set to that value.

  • pivot – Pivot that sets the center point of translate and rotate operation. Pivot values are normalized between [-1, 1] for each axis based on the prim’s axis aligned extents.

  • rotation – Euler angles in degrees in XYZ order. If a single value is provided, all axes will be set to that value.

  • look_at – Look-at target, specified either as a ReplicatorItem, a prim path, or world coordinates. If multiple prims are set, the target point will be the mean of their positions.

  • look_at_up_axis – Look-at up axis of the created prim.

  • semantics – List of semantic type-label pairs.

  • material – Material to attach to the cone.

  • visible – If False, the prim will be invisible. This is often useful when creating prims to use as bounds with other randomizers.

  • as_mesh – If False, create a Usd.Cone prim. If True, create a mesh.

  • count – Number of objects to create.

  • name – Name of the object.

  • parent – Optional parent prim path. The object will be created as a child of this prim.

Example

>>> import omni.replicator.core as rep
>>> cone = rep.create.cone(
...     position=rep.distribution.uniform((0,0,0), (100, 100, 100)),
...     scale=2,
...     rotation=(45, 45, 0),
...     semantics=[("class", "cone")],
... )
omni.replicator.core.create.cube(position: Union[ReplicatorItem, float, Tuple[float]] = None, scale: Union[ReplicatorItem, float, Tuple[float]] = None, pivot: Union[ReplicatorItem, Tuple[float]] = None, rotation: Union[ReplicatorItem, float, Tuple[float]] = None, look_at: Union[ReplicatorItem, str, Path, usdrt.Sdf.Path, Tuple[float, float, float], List[Union[str, Path, usdrt.Sdf.Path]]] = None, look_at_up_axis: Union[ReplicatorItem, Tuple[float]] = None, semantics: List[Tuple[str, str]] = None, material: Union[ReplicatorItem, Prim] = None, visible: bool = True, as_mesh: bool = True, count: int = 1, name: str = None, parent: Union[ReplicatorItem, str, Path, Prim] = None) ReplicatorItem

Create a cube

Parameters
  • position – XYZ coordinates in world space. If a single value is provided, all axes will be set to that value.

  • scale – Scaling factors for XYZ axes. If a single value is provided, all axes will be set to that value.

  • pivot – Pivot that sets the center point of translate and rotate operation. Pivot values are normalized between [-1, 1] for each axis based on the prim’s axis aligned extents.

  • rotation – Euler angles in degrees in XYZ order. If a single value is provided, all axes will be set to that value.

  • look_at – Look-at target, specified either as a ReplicatorItem, a prim path, or world coordinates. If multiple prims are set, the target point will be the mean of their positions.

  • look_at_up_axis – Look-at up axis of the created prim.

  • semantics – List of semantic type-label pairs.

  • material – Material to attach to the cube.

  • visible – If False, the prim will be invisible. This is often useful when creating prims to use as bounds with other randomizers.

  • as_mesh – If False, create a Usd.Cube prim. If True, create a mesh.

  • count – Number of objects to create.

  • name – Name of the object

  • parent – Optional parent prim path. The object will be created as a child of this prim.

Example

>>> import omni.replicator.core as rep
>>> cube = rep.create.cube(
...     position=rep.distribution.uniform((0,0,0), (100, 100, 100)),
...     scale=2,
...     rotation=(45, 45, 0),
...     semantics=[("class", "cube")],
... )
omni.replicator.core.create.cylinder(position: Union[ReplicatorItem, float, Tuple[float]] = None, scale: Union[ReplicatorItem, float, Tuple[float]] = None, pivot: Union[ReplicatorItem, Tuple[float]] = None, rotation: Union[ReplicatorItem, float, Tuple[float]] = None, look_at: Union[ReplicatorItem, str, Path, usdrt.Sdf.Path, Tuple[float, float, float], List[Union[str, Path, usdrt.Sdf.Path]]] = None, look_at_up_axis: Union[ReplicatorItem, Tuple[float]] = None, semantics: List[Tuple[str, str]] = None, material: Union[ReplicatorItem, Prim] = None, visible: bool = True, as_mesh: bool = True, count: int = 1, name: str = None, parent: Union[ReplicatorItem, str, Path, Prim] = None) ReplicatorItem

Create a cylinder

Parameters
  • position – XYZ coordinates in world space. If a single value is provided, all axes will be set to that value.

  • scale – Scaling factors for XYZ axes. If a single value is provided, all axes will be set to that value.

  • pivot – Pivot that sets the center point of translate and rotate operation. Pivot values are normalized between [-1, 1] for each axis based on the prim’s axis aligned extents.

  • rotation – Euler angles in degrees in XYZ order. If a single value is provided, all axes will be set to that value.

  • look_at – Look-at target, specified either as a ReplicatorItem, a prim path, or world coordinates. If multiple prims are set, the target point will be the mean of their positions.

  • look_at_up_axis – Look-at up axis of the created prim.

  • semantics – List of semantic type-label pairs.

  • material – Material to attach to the cylinder.

  • visible – If False, the prim will be invisible. This is often useful when creating prims to use as bounds with other randomizers.

  • as_mesh – If False, create a Usd.Cylinder prim. If True, create a mesh.

  • count – Number of objects to create.

  • name – Name of the object

  • parent – Optional parent prim path. The object will be created as a child of this prim.

Example

>>> import omni.replicator.core as rep
>>> cylinder = rep.create.cylinder(
...     position=rep.distribution.uniform((0,0,0), (100, 100, 100)),
...     scale=2,
...     rotation=(45, 45, 0),
...     semantics=[("class", "cylinder")],
... )
omni.replicator.core.create.disk(position: Union[ReplicatorItem, float, Tuple[float]] = None, scale: Union[ReplicatorItem, float, Tuple[float]] = None, pivot: Union[ReplicatorItem, Tuple[float]] = None, rotation: Union[ReplicatorItem, float, Tuple[float]] = None, look_at: Union[ReplicatorItem, str, Path, usdrt.Sdf.Path, Tuple[float, float, float], List[Union[str, Path, usdrt.Sdf.Path]]] = None, look_at_up_axis: Union[ReplicatorItem, Tuple[float]] = None, semantics: List[Tuple[str, str]] = None, material: Union[ReplicatorItem, Prim] = None, visible: bool = True, count: int = 1, name: str = None, parent: Union[ReplicatorItem, str, Path, Prim] = None) ReplicatorItem

Create a disk

Parameters
  • position – XYZ coordinates in world space. If a single value is provided, all axes will be set to that value.

  • scale – Scaling factors for XYZ axes. If a single value is provided, all axes will be set to that value.

  • pivot – Pivot that sets the center point of translate and rotate operation. Pivot values are normalized between [-1, 1] for each axis based on the prim’s axis aligned extents.

  • rotation – Euler angles in degrees in XYZ order. If a single value is provided, all axes will be set to that value.

  • look_at – Look-at target, specified either as a ReplicatorItem, a prim path, or world coordinates. If multiple prims are set, the target point will be the mean of their positions.

  • look_at_up_axis – Look-at up axis of the created prim.

  • semantics – List of semantic type-label pairs.

  • material – Material to attach to the disk.

  • visible – If False, the prim will be invisible. This is often useful when creating prims to use as bounds with other randomizers.

  • count – Number of objects to create.

  • name – Name of the object.

  • parent – Optional parent prim path. The object will be created as a child of this prim.

Example

>>> import omni.replicator.core as rep
>>> disk = rep.create.disk(
...     position=rep.distribution.uniform((0,0,0), (100, 100, 100)),
...     scale=2,
...     rotation=(45, 45, 0),
...     semantics=[("class", "disk")],
... )
omni.replicator.core.create.plane(position: Union[ReplicatorItem, float, Tuple[float]] = None, scale: Union[ReplicatorItem, float, Tuple[float]] = None, pivot: Union[ReplicatorItem, Tuple[float]] = None, rotation: Union[ReplicatorItem, float, Tuple[float]] = None, look_at: Union[ReplicatorItem, str, Path, usdrt.Sdf.Path, Tuple[float, float, float], List[Union[str, Path, usdrt.Sdf.Path]]] = None, look_at_up_axis: Union[ReplicatorItem, Tuple[float]] = None, semantics: List[Tuple[str, str]] = None, material: Union[ReplicatorItem, Prim] = None, visible: bool = True, count: int = 1, name: str = None, parent: Union[ReplicatorItem, str, Path, Prim] = None) ReplicatorItem

Create a plane

Parameters
  • position – XYZ coordinates in world space. If a single value is provided, all axes will be set to that value.

  • scale – Scaling factors for XYZ axes. If a single value is provided, all axes will be set to that value.

  • pivot – Pivot that sets the center point of translate and rotate operation. Pivot values are normalized between [-1, 1] for each axis based on the prim’s axis aligned extents.

  • rotation – Euler angles in degrees in XYZ order. If a single value is provided, all axes will be set to that value.

  • look_at – Look-at target, specified either as a ReplicatorItem, a prim path, or world coordinates. If multiple prims are set, the target point will be the mean of their positions.

  • look_at_up_axis – Look-at up axis of the created prim.

  • semantics – List of semantic type-label pairs.

  • material – Material to attach to the plane.

  • visible – If False, the prim will be invisible. This is often useful when creating prims to use as bounds with other randomizers.

  • count – Number of objects to create.

  • name – Name of the object

  • parent – Optional parent prim path. The object will be created as a child of this prim.

Example

>>> import omni.replicator.core as rep
>>> plane = rep.create.plane(
...     position=rep.distribution.uniform((0,0,0), (100, 100, 100)),
...     scale=2,
...     rotation=(45, 45, 0),
...     semantics=[("class", "plane")],
... )
omni.replicator.core.create.sphere(position: Union[ReplicatorItem, float, Tuple[float]] = None, scale: Union[ReplicatorItem, float, Tuple[float]] = None, pivot: Union[ReplicatorItem, Tuple[float]] = None, rotation: Union[ReplicatorItem, float, Tuple[float]] = None, look_at: Union[ReplicatorItem, str, Path, usdrt.Sdf.Path, Tuple[float, float, float], List[Union[str, Path, usdrt.Sdf.Path]]] = None, look_at_up_axis: Union[ReplicatorItem, Tuple[float]] = None, semantics: List[Tuple[str, str]] = None, material: Union[ReplicatorItem, Prim] = None, visible: bool = True, as_mesh: bool = True, count: int = 1, name: str = None, parent: Union[ReplicatorItem, str, Path, Prim] = None) ReplicatorItem

Create a sphere

Parameters
  • position – XYZ coordinates in world space. If a single value is provided, all axes will be set to that value.

  • scale – Scaling factors for XYZ axes. If a single value is provided, all axes will be set to that value.

  • pivot – Pivot that sets the center point of translate and rotate operation. Pivot values are normalized between [-1, 1] for each axis based on the prim’s axis aligned extents.

  • rotation – Euler angles in degrees in XYZ order. If a single value is provided, all axes will be set to that value.

  • look_at – Look-at target, specified either as a ReplicatorItem, a prim path, or world coordinates. If multiple prims are set, the target point will be the mean of their positions.

  • look_at_up_axis – Look-at up axis of the created prim.

  • semantics – List of semantic type-label pairs.

  • material – Material to attach to the sphere.

  • visible – If False, the prim will be invisible. This is often useful when creating prims to use as bounds with other randomizers.

  • as_mesh – If False, create a Usd.Sphere prim. If True, create a mesh.

  • count – Number of objects to create.

  • name – Name of the object.

  • parent – Optional parent prim path. The object will be created as a child of this prim.

Example

>>> import omni.replicator.core as rep
>>> sphere = rep.create.sphere(
...     position=rep.distribution.uniform((0,0,0), (100, 100, 100)),
...     scale=2,
...     rotation=(45, 45, 0),
...     semantics=[("class", "sphere")],
... )
omni.replicator.core.create.torus(position: Union[ReplicatorItem, float, Tuple[float]] = None, scale: Union[ReplicatorItem, float, Tuple[float]] = None, pivot: Union[ReplicatorItem, Tuple[float]] = None, rotation: Union[ReplicatorItem, float, Tuple[float]] = None, look_at: Union[ReplicatorItem, str, Path, usdrt.Sdf.Path, Tuple[float, float, float], List[Union[str, Path, usdrt.Sdf.Path]]] = None, look_at_up_axis: Union[ReplicatorItem, Tuple[float]] = None, semantics: List[Tuple[str, str]] = None, material: Union[ReplicatorItem, Prim] = None, visible: bool = True, count: int = 1, name: str = None, parent: Union[ReplicatorItem, str, Path, Prim] = None) ReplicatorItem

Create a torus

Parameters
  • position – XYZ coordinates in world space. If a single value is provided, all axes will be set to that value.

  • scale – Scaling factors for XYZ axes. If a single value is provided, all axes will be set to that value.

  • pivot – Pivot that sets the center point of translate and rotate operation. Pivot values are normalized between [-1, 1] for each axis based on the prim’s axis aligned extents.

  • rotation – Euler angles in degrees in XYZ order. If a single value is provided, all axes will be set to that value.

  • look_at – Look-at target, specified either as a ReplicatorItem, a prim path, or world coordinates. If multiple prims are set, the target point will be the mean of their positions.

  • look_at_up_axis – Look-at up axis of the created prim.

  • semantics – List of semantic type-label pairs.

  • material – Material to attach to the torus.

  • visible – If False, the prim will be invisible. This is often useful when creating prims to use as bounds with other randomizers.

  • count – Number of objects to create.

  • name – Name of the object

  • parent – Optional parent prim path. The object will be created as a child of this prim.

Example

>>> import omni.replicator.core as rep
>>> torus = rep.create.torus(
...     position=rep.distribution.uniform((0,0,0), (100, 100, 100)),
...     scale=2,
...     rotation=(45, 45, 0),
...     semantics=[("class", "torus")],
... )
omni.replicator.core.create.xform(position: Union[ReplicatorItem, float, Tuple[float]] = None, scale: Union[ReplicatorItem, float, Tuple[float]] = None, rotation: Union[ReplicatorItem, float, Tuple[float]] = None, look_at: Union[ReplicatorItem, str, Path, usdrt.Sdf.Path, Tuple[float, float, float], List[Union[str, Path, usdrt.Sdf.Path]]] = None, look_at_up_axis: Union[ReplicatorItem, Tuple[float]] = None, semantics: List[Tuple[str, str]] = None, visible: bool = True, count: int = 1, name: str = None, parent: Union[ReplicatorItem, str, Path, Prim] = None) ReplicatorItem

Create a Xform

Parameters
  • position – XYZ coordinates in world space. If a single value is provided, all axes will be set to that value.

  • scale – Scaling factors for XYZ axes. If a single value is provided, all axes will be set to that value.

  • rotation – Euler angles in degrees in XYZ order. If a single value is provided, all axes will be set to that value.

  • look_at – Look-at target, specified either as a ReplicatorItem, a prim path, or world coordinates. If multiple prims are set, the target point will be the mean of their positions.

  • look_at_up_axis – Look-at up axis of the created prim.

  • semantics – List of semantic type-label pairs.

  • visible – If False, the prim will be invisible. This is often useful when creating prims to use as bounds with other randomizers.

  • count – Number of objects to create.

  • name – Name of the object.

  • parent – Optional parent prim path. The xform will be created as a child of this prim.

Example

>>> import omni.replicator.core as rep
>>> xform = rep.create.xform(
...     position=rep.distribution.uniform((0,0,0), (100, 100, 100)),
...     semantics=[("class", "thing")],
... )

USD

omni.replicator.core.create.from_dir(dir_path: str, recursive: bool = False, path_filter: Optional[str] = None, semantics: Optional[List[Tuple[str, str]]] = None) ReplicatorItem

Create a group of assets from the USD files found in dir_path

Parameters
  • dir_path – The root path to search from.

  • recursive – If True, search through sub-folders.

  • path_filter – A Regular Expression (RegEx) string to filter paths with.

  • semantics – List of semantic type-label pairs.

Example

>>> import omni.replicator.core as rep
>>> asset_path = rep.example.ASSETS_DIR
>>> asset = rep.create.from_dir(asset_path, path_filter="rocket")
omni.replicator.core.create.from_usd(usd: str, semantics: List[Tuple[str, str]] = None, count: int = 1) ReplicatorItem

Reference a USD into the current USD stage.

Parameters
  • usd – Path to a usd file (\*.usd, \*.usdc, \*.usda)

  • semantics – List of semantic type-label pairs.

Example

>>> import omni.replicator.core as rep
>>> usd_path = rep.example.ASSETS[0]
>>> asset = rep.create.from_usd(usd_path, semantics=[("class", "example")])

Get

get methods are helpers to get objects from the USD stage, either by path or by semantic label.

get.prims is very broad with its regex matching on the USD stage, so individual helper methods are provided to narrow the search field to differnt USD types (mesh, light, etc.)

omni.replicator.core.get.camera(path_pattern: str = None, path_pattern_exclusion: str = None, semantics: Union[List[Tuple[str, str]], Tuple[str, str]] = None, semantics_exclusion: Union[List[Tuple[str, str]], Tuple[str, str]] = None, cache_result: bool = True, name: Optional[str] = None, path_match: str = None) ReplicatorItem

Get Usd ‘camera’ types based on specified constraints.

Parameters
  • path_pattern – The RegEx (Regular Expression) path pattern to match.

  • path_pattern_exclusion – The RegEx (Regular Expression) path pattern to ignore.

  • semantics – Semantic type-value pairs of semantics to include

  • semantics_exclusion – Semantic type-value pairs of semantics to ignore

  • cache_result – Run get prims a single time, then return the cached result

  • name (optional) – A name for the graph node.

  • path_match – Python string matching. Faster than regex matching.

omni.replicator.core.get.curve(path_pattern: str = None, path_pattern_exclusion: str = None, semantics: Union[List[Tuple[str, str]], Tuple[str, str]] = None, semantics_exclusion: Union[List[Tuple[str, str]], Tuple[str, str]] = None, cache_result: bool = True, name: Optional[str] = None, path_match: str = None) ReplicatorItem

Get Usd ‘curve’ types based on specified constraints.

Parameters
  • path_pattern – The RegEx (Regular Expression) path pattern to match.

  • path_pattern_exclusion – The RegEx (Regular Expression) path pattern to ignore.

  • semantics – Semantic type-value pairs of semantics to include

  • semantics_exclusion – Semantic type-value pairs of semantics to ignore

  • cache_result – Run get prims a single time, then return the cached result

  • name (optional) – A name for the graph node.

  • path_match – Python string matching. Faster than regex matching.

omni.replicator.core.get.geomsubset(path_pattern: str = None, path_pattern_exclusion: str = None, semantics: Union[List[Tuple[str, str]], Tuple[str, str]] = None, semantics_exclusion: Union[List[Tuple[str, str]], Tuple[str, str]] = None, cache_result: bool = True, name: Optional[str] = None, path_match: str = None) ReplicatorItem

Get Usd ‘geomsubset’ types based on specified constraints.

Parameters
  • path_pattern – The RegEx (Regular Expression) path pattern to match.

  • path_pattern_exclusion – The RegEx (Regular Expression) path pattern to ignore.

  • semantics – Semantic type-value pairs of semantics to include

  • semantics_exclusion – Semantic type-value pairs of semantics to ignore

  • cache_result – Run get prims a single time, then return the cached result

  • name (optional) – A name for the graph node.

  • path_match – Python string matching. Faster than regex matching.

omni.replicator.core.get.graph(path_pattern: str = None, path_pattern_exclusion: str = None, semantics: Union[List[Tuple[str, str]], Tuple[str, str]] = None, semantics_exclusion: Union[List[Tuple[str, str]], Tuple[str, str]] = None, cache_result: bool = True, name: Optional[str] = None, path_match: str = None) ReplicatorItem

Get all ‘graph’ types based on specified constraints.

Parameters
  • path_pattern – The RegEx (Regular Expression) path pattern to match.

  • path_pattern_exclusion – The RegEx (Regular Expression) path pattern to ignore.

  • semantics – Semantic type-value pairs of semantics to include

  • semantics_exclusion – Semantic type-value pairs of semantics to ignore

  • cache_result – Run get prims a single time, then return the cached result

  • name (optional) – A name for the graph node.

  • path_match – Python string matching. Faster than regex matching.

omni.replicator.core.get.light(path_pattern: str = None, path_pattern_exclusion: str = None, semantics: Union[List[Tuple[str, str]], Tuple[str, str]] = None, semantics_exclusion: Union[List[Tuple[str, str]], Tuple[str, str]] = None, cache_result: bool = True, name: Optional[str] = None, path_match: str = None) ReplicatorItem
Get Usd ‘light’ types based on specified constraints.

Matches types RectLight, SphereLight, CylinderLight, DiskLight, DistantLight, SphereLight

Parameters
  • path_pattern – The RegEx (Regular Expression) path pattern to match.

  • path_pattern_exclusion – The RegEx (Regular Expression) path pattern to ignore.

  • semantics – Semantic type-value pairs of semantics to include

  • semantics_exclusion – Semantic type-value pairs of semantics to ignore

  • cache_result – Run get prims a single time, then return the cached result

  • name (optional) – A name for the graph node.

  • path_match – Python string matching. Faster than regex matching.

omni.replicator.core.get.listener(path_pattern: str = None, path_pattern_exclusion: str = None, semantics: Union[List[Tuple[str, str]], Tuple[str, str]] = None, semantics_exclusion: Union[List[Tuple[str, str]], Tuple[str, str]] = None, cache_result: bool = True, name: Optional[str] = None, path_match: str = None) ReplicatorItem

Get Usd listener types based on specified constraints.

Parameters
  • path_pattern – The RegEx (Regular Expression) path pattern to match.

  • path_pattern_exclusion – The RegEx (Regular Expression) path pattern to ignore.

  • semantics – Semantic type-value pairs of semantics to include

  • semantics_exclusion – Semantic type-value pairs of semantics to ignore

  • cache_result – Run get prims a single time, then return the cached result

  • name (optional) – A name for the graph node.

  • path_match – Python string matching. Faster than regex matching.

omni.replicator.core.get.material(path_pattern: str = None, path_pattern_exclusion: str = None, semantics: Union[List[Tuple[str, str]], Tuple[str, str]] = None, semantics_exclusion: Union[List[Tuple[str, str]], Tuple[str, str]] = None, cache_result: bool = True, name: Optional[str] = None, path_match: str = None) ReplicatorItem

Get Usd material types based on specified constraints.

Parameters
  • path_pattern – The RegEx (Regular Expression) path pattern to match.

  • path_pattern_exclusion – The RegEx (Regular Expression) path pattern to ignore.

  • semantics – Semantic type-value pairs of semantics to include

  • semantics_exclusion – Semantic type-value pairs of semantics to ignore

  • cache_result – Run get prims a single time, then return the cached result

  • name (optional) – A name for the graph node.

  • path_match – Python string matching. Faster than regex matching.

omni.replicator.core.get.mesh(path_pattern: str = None, path_pattern_exclusion: str = None, semantics: Union[List[Tuple[str, str]], Tuple[str, str]] = None, semantics_exclusion: Union[List[Tuple[str, str]], Tuple[str, str]] = None, cache_result: bool = True, name: Optional[str] = None, path_match: str = None) ReplicatorItem

Get Usd mesh types based on specified constraints.

Parameters
  • path_pattern – The RegEx (Regular Expression) path pattern to match.

  • path_pattern_exclusion – The RegEx (Regular Expression) path pattern to ignore.

  • semantics – Semantic type-value pairs of semantics to include

  • semantics_exclusion – Semantic type-value pairs of semantics to ignore

  • cache_result – Run get prims a single time, then return the cached result

  • name (optional) – A name for the graph node.

  • path_match – Python string matching. Faster than regex matching.

omni.replicator.core.get.physics(path_pattern: str = None, path_pattern_exclusion: str = None, semantics: Union[List[Tuple[str, str]], Tuple[str, str]] = None, semantics_exclusion: Union[List[Tuple[str, str]], Tuple[str, str]] = None, cache_result: bool = True, name: Optional[str] = None, path_match: str = None) ReplicatorItem

Get physics/physicsscene types based on specified constraints.

Parameters
  • path_pattern – The RegEx (Regular Expression) path pattern to match.

  • path_pattern_exclusion – The RegEx (Regular Expression) path pattern to ignore.

  • semantics – Semantic type-value pairs of semantics to include

  • semantics_exclusion – Semantic type-value pairs of semantics to ignore

  • cache_result – Run get prims a single time, then return the cached result

  • name (optional) – A name for the graph node.

  • path_match – Python string matching. Faster than regex matching.

omni.replicator.core.get.prim_at_path(path: Union[str, List[str], ReplicatorItem], name: Optional[str] = None) ReplicatorItem

Get the prim at the exact path

Parameters
  • path – USD path to the desired prim. Defaults to None.

  • name (optional) – A name for the graph node.

omni.replicator.core.get.prims(path_pattern: str = None, path_match: str = None, path_pattern_exclusion: str = None, prim_types: Union[str, List[str]] = None, prim_types_exclusion: Union[str, List[str]] = None, semantics: Union[List[Tuple[str, str]], Tuple[str, str]] = None, semantics_exclusion: Union[List[Tuple[str, str]], Tuple[str, str]] = None, cache_result: bool = True, ignore_case: bool = True, name: Optional[str] = None) ReplicatorItem

Get prims based on specified constraints.

Search the stage for stage paths with matches to the specified constraints.

Parameters
  • path_pattern – The RegEx (Regular Expression) path pattern to match.

  • path_match – Python string matching. Faster than regex matching.

  • path_pattern_exclusion – The RegEx (Regular Expression) path pattern to ignore.

  • prim_types – List of prim types to include

  • prim_types_exclusion – List of prim types to ignore

  • semantics – Semantic type-value pairs of semantics to include

  • semantics_exclusion – Semantic type-value pairs of semantics to ignore

  • cache_result – Run get prims a single time, then return the cached result

  • ignore_case – Case-insensitive regex matching

  • name (optional) – A name for the graph node.

omni.replicator.core.get.renderproduct(path_pattern: str = None, path_pattern_exclusion: str = None, semantics: Union[List[Tuple[str, str]], Tuple[str, str]] = None, semantics_exclusion: Union[List[Tuple[str, str]], Tuple[str, str]] = None, cache_result: bool = True, name: Optional[str] = None, path_match: str = None) ReplicatorItem

Get Usd renderproduct types based on specified constraints.

Parameters
  • path_pattern – The RegEx (Regular Expression) path pattern to match.

  • path_pattern_exclusion – The RegEx (Regular Expression) path pattern to ignore.

  • semantics – Semantic type-value pairs of semantics to include

  • semantics_exclusion – Semantic type-value pairs of semantics to ignore

  • cache_result – Run get prims a single time, then return the cached result

  • name (optional) – A name for the graph node.

  • path_match – Python string matching. Faster than regex matching.

omni.replicator.core.get.rendervar(path_pattern: str = None, path_pattern_exclusion: str = None, semantics: Union[List[Tuple[str, str]], Tuple[str, str]] = None, semantics_exclusion: Union[List[Tuple[str, str]], Tuple[str, str]] = None, cache_result: bool = True, name: Optional[str] = None, path_match: str = None) ReplicatorItem

Get Usd rendervar types based on specified constraints.

Parameters
  • path_pattern – The RegEx (Regular Expression) path pattern to match.

  • path_pattern_exclusion – The RegEx (Regular Expression) path pattern to ignore.

  • semantics – Semantic type-value pairs of semantics to include

  • semantics_exclusion – Semantic type-value pairs of semantics to ignore

  • cache_result – Run get prims a single time, then return the cached result

  • name (optional) – A name for the graph node.

  • path_match – Python string matching. Faster than regex matching.

omni.replicator.core.get.scope(path_pattern: str = None, path_pattern_exclusion: str = None, semantics: Union[List[Tuple[str, str]], Tuple[str, str]] = None, semantics_exclusion: Union[List[Tuple[str, str]], Tuple[str, str]] = None, cache_result: bool = True, name: Optional[str] = None, path_match: str = None) ReplicatorItem

Get Usd ‘scope’ types based on specified constraints.

Parameters
  • path_pattern – The RegEx (Regular Expression) path pattern to match.

  • path_pattern_exclusion – The RegEx (Regular Expression) path pattern to ignore.

  • semantics – Semantic type-value pairs of semantics to include

  • semantics_exclusion – Semantic type-value pairs of semantics to ignore

  • cache_result – Run get prims a single time, then return the cached result

  • name (optional) – A name for the graph node.

  • path_match – Python string matching. Faster than regex matching.

omni.replicator.core.get.shader(path_pattern: str = None, path_pattern_exclusion: str = None, semantics: Union[List[Tuple[str, str]], Tuple[str, str]] = None, semantics_exclusion: Union[List[Tuple[str, str]], Tuple[str, str]] = None, cache_result: bool = True, name: Optional[str] = None, path_match: str = None) ReplicatorItem

Get Usd ‘shader’ types based on specified constraints.

Parameters
  • path_pattern – The RegEx (Regular Expression) path pattern to match.

  • path_pattern_exclusion – The RegEx (Regular Expression) path pattern to ignore.

  • semantics – Semantic type-value pairs of semantics to include

  • semantics_exclusion – Semantic type-value pairs of semantics to ignore

  • cache_result – Run get prims a single time, then return the cached result

  • name (optional) – A name for the graph node.

  • path_match – Python string matching. Faster than regex matching.

omni.replicator.core.get.shape(path_pattern: str = None, path_pattern_exclusion: str = None, semantics: Union[List[Tuple[str, str]], Tuple[str, str]] = None, semantics_exclusion: Union[List[Tuple[str, str]], Tuple[str, str]] = None, cache_result: bool = True, name: Optional[str] = None, path_match: str = None) ReplicatorItem
Get Usd ‘shape’ types based on specified constraints.

Includes Capsule, Cone, Cube, Cylinder, Plane, Sphere

Parameters
  • path_pattern – The RegEx (Regular Expression) path pattern to match.

  • path_pattern_exclusion – The RegEx (Regular Expression) path pattern to ignore.

  • semantics – Semantic type-value pairs of semantics to include

  • semantics_exclusion – Semantic type-value pairs of semantics to ignore

  • cache_result – Run get prims a single time, then return the cached result

  • name (optional) – A name for the graph node.

  • path_match – Python string matching. Faster than regex matching.

omni.replicator.core.get.skelanimation(path_pattern: str = None, path_pattern_exclusion: str = None, semantics: Union[List[Tuple[str, str]], Tuple[str, str]] = None, semantics_exclusion: Union[List[Tuple[str, str]], Tuple[str, str]] = None, cache_result: bool = True, name: Optional[str] = None, path_match: str = None) ReplicatorItem

Get Usd ‘skelanimation’ types based on specified constraints.

Parameters
  • path_pattern – The RegEx (Regular Expression) path pattern to match.

  • path_pattern_exclusion – The RegEx (Regular Expression) path pattern to ignore.

  • semantics – Semantic type-value pairs of semantics to include

  • semantics_exclusion – Semantic type-value pairs of semantics to ignore

  • cache_result – Run get prims a single time, then return the cached result

  • name (optional) – A name for the graph node.

  • path_match – Python string matching. Faster than regex matching.

omni.replicator.core.get.skeleton(path_pattern: str = None, path_pattern_exclusion: str = None, semantics: Union[List[Tuple[str, str]], Tuple[str, str]] = None, semantics_exclusion: Union[List[Tuple[str, str]], Tuple[str, str]] = None, cache_result: bool = True, name: Optional[str] = None, path_match: str = None) ReplicatorItem

Get Usd ‘skeleton’ types based on specified constraints.

Parameters
  • path_pattern – The RegEx (Regular Expression) path pattern to match.

  • path_pattern_exclusion – The RegEx (Regular Expression) path pattern to ignore.

  • semantics – Semantic type-value pairs of semantics to include

  • semantics_exclusion – Semantic type-value pairs of semantics to ignore

  • cache_result – Run get prims a single time, then return the cached result

  • name (optional) – A name for the graph node.

  • path_match – Python string matching. Faster than regex matching.

omni.replicator.core.get.sound(path_pattern: str = None, path_pattern_exclusion: str = None, semantics: Union[List[Tuple[str, str]], Tuple[str, str]] = None, semantics_exclusion: Union[List[Tuple[str, str]], Tuple[str, str]] = None, cache_result: bool = True, name: Optional[str] = None, path_match: str = None) ReplicatorItem

Get Usd ‘sound’ types based on specified constraints.

Parameters
  • path_pattern – The RegEx (Regular Expression) path pattern to match.

  • path_pattern_exclusion – The RegEx (Regular Expression) path pattern to ignore.

  • semantics – Semantic type-value pairs of semantics to include

  • semantics_exclusion – Semantic type-value pairs of semantics to ignore

  • cache_result – Run get prims a single time, then return the cached result

  • name (optional) – A name for the graph node.

  • path_match – Python string matching. Faster than regex matching.

omni.replicator.core.get.xform(path_pattern: str = None, path_pattern_exclusion: str = None, semantics: Union[List[Tuple[str, str]], Tuple[str, str]] = None, semantics_exclusion: Union[List[Tuple[str, str]], Tuple[str, str]] = None, cache_result: bool = True, name: Optional[str] = None, path_match: str = None) ReplicatorItem

Get Usd ‘xform’ types based on specified constraints.

Parameters
  • path_pattern – The RegEx (Regular Expression) path pattern to match.

  • path_pattern_exclusion – The RegEx (Regular Expression) path pattern to ignore.

  • semantics – Semantic type-value pairs of semantics to include

  • semantics_exclusion – Semantic type-value pairs of semantics to ignore

  • cache_result – Run get prims a single time, then return the cached result

  • name (optional) – A name for the graph node.

  • path_match – Python string matching. Faster than regex matching.

omni.replicator.core.get.register(fn: Callable[[...], Union[ReplicatorItem, Node]], override: bool = True, fn_name: Optional[str] = None) None

Register a new function under omni.replicator.core.get. Extend the default capabilities of omni.replicator.core.get by registering new functionality. New functions must return a ReplicatorItem or an OmniGraph node.

Parameters
  • fn – A function that returns a ReplicatorItem or an OmniGraph node.

  • override – If True, will override existing functions of the same name. If False, an error is raised.

  • fn_name – Optional, specify the registration name. If not specified, the function name is used. fn_name must only contains alphanumeric letters (a-z), numbers (0-9), or underscores (_), and cannot start with a number or contain any spaces.

Distribution

distribution methods are helpers set a range of values to simulate complex behavior.

omni.replicator.core.distribution.choice(choices: List[str], weights: List[float] = None, num_samples: Union[ReplicatorItem, int] = 1, seed: Optional[int] = -1, with_replacements: bool = True, name: Optional[str] = None) ReplicatorItem

Provides sampling from a list of values

Parameters
  • choices – Values in the distribution to choose from.

  • weights – Matching list of weights for each choice.

  • num_samples – The number of times to sample.

  • seed (optional) – A seed to use for the sampling.

  • with_replacements – If True, allow re-sampling the same element. If False, each element can only be sampled once. Note that in this case, the size of the elements being sampled must be larger than the sampling size. Default is True.

  • name (optional) – A name for the given distribution. Named distributions will have their values available to the Writer.

omni.replicator.core.distribution.combine(distributions: List[Union[ReplicatorItem, Tuple[ReplicatorItem]]], name: Optional[str] = None) ReplicatorItem

Combine input from different distributions.

Parameters
  • distributions – List of Replicator distribution nodes or numbers.

  • name (optional) – A name for the given distribution. Named distributions will have their values available to the Writer.

omni.replicator.core.distribution.log_uniform(lower: Tuple, upper: Tuple, num_samples: int = 1, seed: Optional[int] = None, name: Optional[str] = None) ReplicatorItem

Provides sampling with a log uniform distribution

Parameters
  • lower – Lower end of the distribution.

  • upper – Upper end of the distribution.

  • num_samples – The number of times to sample.

  • seed (optional) – A seed to use for the sampling.

  • name (optional) – A name for the given distribution. Named distributions will have their values available to the Writer.

omni.replicator.core.distribution.normal(mean: Tuple, std: Tuple, num_samples: int = 1, seed: Optional[int] = None, name: Optional[str] = None) ReplicatorItem

Provides sampling with a normal distribution

Parameters
  • mean – Average value for the distribution.

  • std – Standard deviation value for the distribution.

  • num_samples – The number of times to sample.

  • seed (optional) – A seed to use for the sampling.

  • name (optional) – A name for the given distribution. Named distributions will have their values available to the Writer.

omni.replicator.core.distribution.sequence(items: Union[List, ReplicatorItem], ordered: Optional[bool] = True, seed: Optional[int] = -1, name: Optional[str] = None) ReplicatorItem

Provides sampling sequentially

Parameters
  • items – Ordered list of items to sample sequentially.

  • ordered – Whether to return item in order.

  • seed (optional) – A seed to use for the sampling.

  • name (optional) – A name for the given distribution. Named distributions will have their values available to the Writer.

Example

>>> import omni.replicator.core as rep
>>> cube = rep.create.cube(count=1)
>>> with cube:
...     rep.modify.pose(position=rep.distribution.sequence([(0.0, 0.0, 200.0), (0.0, 200.0, 0.0), (200.0, 0.0, 0.0)]))
omni.replicator.core.distribution.sequence
omni.replicator.core.distribution.uniform(lower: Tuple, upper: Tuple, num_samples: int = 1, seed: Optional[int] = None, name: Optional[str] = None) ReplicatorItem

Provides sampling with a uniform distribution

Parameters
  • lower – Lower end of the distribution.

  • upper – Upper end of the distribution.

  • num_samples – The number of times to sample.

  • seed (optional) – A seed to use for the sampling.

  • name (optional) – A name for the given distribution. Named distributions will have their values available to the Writer.

omni.replicator.core.distribution.register(fn: Callable[[...], Union[ReplicatorItem, Node]], override: bool = True, fn_name: Optional[str] = None) None

Register a new function under omni.replicator.core.distribution. Extend the default capabilities of omni.replicator.core.distribution by registering new functionality. New functions must return a ReplicatorItem or an OmniGraph node.

Parameters
  • fn – A function that returns a ReplicatorItem or an OmniGraph node.

  • override – If True, will override existing functions of the same name. If False, an error is raised.

  • fn_name – Optional, specify the registration name. If not specified, the function name is used. fn_name must only contains alphanumeric letters (a-z), numbers (0-9), or underscores (_), and cannot start with a number or contain any spaces.

Modify

modify methods are helpers to get change objects on the USD stage.

omni.replicator.core.modify.animation(values: Union[ReplicatorItem, List[str], List[Path], List[usdrt.Sdf.Path]], reset_timeline: bool = False, input_prims: Union[ReplicatorItem, List[str]] = None) ReplicatorItem

Modify the bound animation on a skeleton. This does not do any retargetting.

Parameters
  • values – The animation to set to the skeleton. If a list of values is provided, one will be chosen at random.

  • reset_timeline – Reset the timeline after changing the animation.

  • input_prims – The skeleton to modify. If using with syntax, this argument can be omitted.

Example

>>> import omni.replicator.core as rep
>>> from pxr import Sdf
>>> person = rep.get.skeleton('/World/Worker/Worker')
>>> new_anim = Sdf.Path('/World/other_anim')
>>> with person:
...    rep.modify.animation([new_anim])
omni.replicator.core.modify.animation
omni.replicator.core.modify.attribute(name: str, value: Union[Any, ReplicatorItem], attribute_type: str = None, input_prims: Union[ReplicatorItem, List[str]] = None) ReplicatorItem

Modify the attribute of the prims specified in input_prims.

Parameters
  • name – The name of the attribute to modify.

  • value – The value to set the attribute to.

  • attribute_type – The data type of the attribute. This parameter is required if the attribute specified does not already exist and must be created.

  • input_prims – The prims to be modified. If using with syntax, this argument can be omitted.

Example

>>> import omni.replicator.core as rep
>>> sphere = rep.create.sphere(as_mesh=False)
>>> with sphere:
...     rep.modify.attribute("radius", rep.distribution.uniform(1, 5))
omni.replicator.core.modify.attribute
omni.replicator.core.modify.material(value: Union[ReplicatorItem, List[str]] = None, input_prims: Union[ReplicatorItem, List[str]] = None, name: Optional[str] = None) ReplicatorItem

Modify the material bound to the prims specified in input_prims.

Parameters
  • value – The material to bind to the prims. If multiple materials provided, a random one will be chosen.

  • input_prims – The prims to be modified. If using with syntax, this argument can be omitted.

  • name (optional) – A name for the graph node.

Example

>>> import omni.replicator.core as rep
>>> mat = rep.create.material_omnipbr()
>>> sphere = rep.create.sphere(as_mesh=False)
>>> with sphere:
...     rep.modify.material(["/Replicator/Looks/OmniPBR"])
omni.replicator.core.modify.material
omni.replicator.core.modify.pose(position: Union[ReplicatorItem, float, Tuple[float]] = None, position_x: Union[ReplicatorItem, float] = None, position_y: Union[ReplicatorItem, float] = None, position_z: Union[ReplicatorItem, float] = None, rotation: Union[ReplicatorItem, float, Tuple[float]] = None, rotation_x: Union[ReplicatorItem, float] = None, rotation_y: Union[ReplicatorItem, float] = None, rotation_z: Union[ReplicatorItem, float] = None, rotation_order: str = 'XYZ', scale: Union[ReplicatorItem, float, Tuple[float]] = None, size: Union[ReplicatorItem, float, Tuple[float]] = None, pivot: Union[ReplicatorItem, Tuple[float]] = None, look_at: Union[ReplicatorItem, str, Path, usdrt.Sdf.Path, Tuple[float, float, float], List[Union[str, Path, usdrt.Sdf.Path]]] = None, look_at_up_axis: Union[str, Tuple[float, float, float]] = None, input_prims: Union[ReplicatorItem, List[str]] = None, name: Optional[str] = None) ReplicatorItem

Modify the position, rotation, scale, and/or look-at target of the prims specified in input_prims.

Parameters
  • position – XYZ coordinates in world space.

  • position_x – coordinates value along the x axis.

  • position_y – coordinates value along the y axis.

  • position_z – coordinates value along the z axis.

  • rotation – Rotation in degrees for the axes specified in rotation_order.

  • rotation_x – Rotation in degrees for the X axis.

  • rotation_y – Rotation in degrees for the Y axis.

  • rotation_z – Rotation in degrees for the Z axis.

  • rotation_order – Order of rotation. Select from [XYZ, XZY, YXZ, YZX, ZXY, ZYX]

  • scale – Scale factor for each of XYZ axes.

  • size – Desired size of the input prims. Each input prim is scaled to match the specified size extents in each of the XYZ axes.

  • pivot – Pivot that sets the center point of translate and rotate operation.

  • look_at – The look at target to orient towards specified as either a ReplicatorItem, a prim path, or world coordinates. If multiple prims are set, the target point will be the mean of their positions.

  • look_at_up_axis – The up axis used in look_at function

  • input_prims – The prims to be modified. If using with syntax, this argument can be omitted.

  • name (optional) – A name for the graph node.

Note

  • position and any of (position_x, position_y, and position_z) cannot both be specified.

  • rotation and look_at cannot both be specified.

  • size and scale cannot both be specified.

  • size is converted to scale based on the prim’s current axis-aligned bounding box size. If a scale is already applied, it might not be able to reflect the true size of the prim.

Example

>>> import omni.replicator.core as rep
>>> with rep.create.cube():
...     rep.modify.pose(position=rep.distribution.uniform((0, 0, 0), (100, 100, 100)),
...                     scale=rep.distribution.uniform(0.1, 10),
...                     look_at=(0, 0, 0))
omni.replicator.core.modify.pose
omni.replicator.core.modify.pose_camera_relative(camera: Union[ReplicatorItem, List[str]], render_product: ReplicatorItem, distance: float, horizontal_location: float = 0, vertical_location: float = 0, input_prims=None) ReplicatorItem

Modify the positions of the prim relative to a camera.

Parameters
  • camera – Camera that the prim is relative to.

  • horizontal_location – Horizontal location in the camera space, which is in the range [-1, 1].

  • vertical_location – Vertical location in the camera space, which is in the range [-1, 1].

  • distance – Distance from the prim to the camera.

  • input_prims – The prims to be modified. If using with syntax, this argument can be omitted.

Example

>>> import omni.replicator.core as rep
>>> camera = rep.create.camera()
>>> render_product = rep.create.render_product(camera, (1024, 512))
>>> with rep.create.cube():
...     rep.modify.pose_camera_relative(camera, render_product, distance=500, horizontal_location=0, vertical_location=0)
omni.replicator.core.modify.pose_camera_relative
omni.replicator.core.modify.pose_orbit(barycentre: Union[ReplicatorItem, Tuple[float, float, float], str], distance: Union[ReplicatorItem, float], azimuth: Union[ReplicatorItem, float], elevation: Union[ReplicatorItem, float], look_at_barycentre: bool = True, input_prims: Optional[Union[ReplicatorItem, List[str]]] = None) Node

Position the input_prims in an orbit around a point.

Parameters
  • barycentre – The point around which to position the input prims. The barycentre can be specified as either coordinates or as prim paths. If more than one prim path is provided, the barycentre will be set to the mean of the prim centres.

  • distance – Distance from barycentre

  • azimuth – Horizontal angle (in degrees).

  • elevation – Vertical angle (in degrees).

  • look_at_centre – If True, orient the input_prims towards the barycentre. Default True.

  • input_prims – The prims to be modified. If using with syntax, this argument can be omitted.

Example

>>> import omni.replicator.core as rep
>>> cube = rep.create.cube()
>>> camera = rep.create.camera()
>>> with camera:
...     rep.modify.pose_orbit(
...         barycentre=cube,
...         distance=rep.distribution.uniform(400, 500),
...         azimuth=45,
...         elevation=rep.distribution.uniform(-180, 180),
...     )
omni.replicator.core.modify._pose_orbit
omni.replicator.core.modify.projection_material(position: Union[ReplicatorItem, List[str]] = None, rotation: Union[ReplicatorItem, List[str]] = None, scale: Union[ReplicatorItem, List[str]] = None, texture_group: Union[ReplicatorItem, List[str]] = None, diffuse: Union[ReplicatorItem, List[str]] = None, normal: Union[ReplicatorItem, List[str]] = None, roughness: Union[ReplicatorItem, List[str]] = None, metallic: Union[ReplicatorItem, List[str]] = None, input_prims: Union[ReplicatorItem, List[str]] = None, name: Optional[str] = None) Node

Modify values on a projection and update the transform via updates to the proxy prim.

The proxy prims’ transforms can be modified outside this function and then this function can be used to update the projection position, scale, and rotation if not manually provided.

Parameters
  • position – Manually update the position of the projection, this will override the position from the proxy.

  • rotation – Manually update the rotation of the projection, this will override the rotation from the proxy.

  • scale – Manually update the scale of the projection, this will override the scale from the proxy.

  • texture_group – Update the diffuse, normal, roughness, and/or metallic texture simultaniously. Use where there are diffuse, normal, roughness, and/or metallic textures in a set. If using this arg, the diffuse, normal, roughness and/or metallic args should be set to the suffix used to denote each type.

  • diffuse – Update the diffuse texture used on the projection material. Will not change if not provided.

  • normal – Update the normal texture used on the projection material. Will not change if not provided.

  • roughness – Update the roughness texture used on the projection material. Will not change if not provided.

  • metallic – Update the metallic texture used on the projection material. Will not change if not provided.

  • input_prims – The projection prim to modify. If using with syntax, this argument can be omitted.

  • name (optional) – A name for the graph node.

Example

>>> import omni.replicator.core as rep
>>> import os
>>> torus = rep.create.torus()
>>> cube = rep.create.cube(position=(50, 100, 0), rotation=(0, 0, 90), scale=(0.2, 0.2, 0.2))
>>> sem = [('class', 'shape')]
>>> with torus:
...     projection = rep.create.projection_material(cube, sem)
>>> with projection:
...     rep.modify.projection_material(diffuse=os.path.join(rep.example.TEXTURES_DIR, "smiley_albedo.png"))
omni.replicator.core.modify.projection_material
omni.replicator.core.modify.semantics(semantics: List[Union[str, Tuple[str, str]]] = None, input_prims: Union[ReplicatorItem, List[str]] = None, mode: str = 'add') ReplicatorItem

Add semantics to the target prims

Parameters
  • semanticsTYPE,VALUE pairs of semantic labels to include on the prim. (Ex: (‘class’, ‘sphere’))

  • input_prims – The prims to be modified. If using with syntax, this argument can be omitted.

  • mode – Semantics modification mode. Select from [add, replace, clear]. In add mode, semantic labels are added to the prim, labels with the same TYPE:VALUE will be skipped. (eg. class:car, class:sedan -> class:car, class:sedan, class:automobile). In replace mode, the semantics VALUE specified will replace any existing value of the same semantic TYPE (eg. class:car, class:sedan, subclass:emergency -> class:automobile, subclass:emergency). In clear mode, ALL existing semantics are cleared before adding the specified semantics. (eg. class:car, subclass:emergency, region:usa -> class:automobile).

Example

>>> import omni.replicator.core as rep
>>> with rep.create.sphere():
...     rep.modify.semantics([("class", "sphere")])
omni.replicator.core.modify.semantics
omni.replicator.core.modify.variant(name: str, value: Union[List[str], ReplicatorItem], input_prims: Union[ReplicatorItem, List[str]] = None) ReplicatorItem

Modify the variant of the prims specified in input_prims.

Parameters
  • name – The name of the variant set to modify.

  • value – The value to set the variant to.

  • input_prims – The prims to be modified. If using with syntax, this argument can be omitted.

Example

>>> import os
>>> import omni.replicator.core as rep
>>> sphere = rep.create.from_usd(os.path.join(rep.example.ASSETS_DIR, "variant.usd"))
>>> with rep.trigger.on_frame(max_execs=10):
...     with sphere:
...         rep.modify.variant("colorVariant", rep.distribution.choice(["red", "green", "blue"]))
omni.replicator.core.modify.variant
omni.replicator.core.modify.visibility(value: Union[ReplicatorItem, List[bool], bool] = None, input_prims: Union[ReplicatorItem, List[str]] = None, name: Optional[str] = None) ReplicatorItem

Modify the visibility of prims.

Parameters
  • value – True, False. Or a list of bools for each prim to be modified, or a Replicator Distribution.

  • input_prims – The prims to be modified. If using with syntax, this argument can be omitted.

  • name (optional) – A name for the graph node.

Example

>>> import omni.replicator.core as rep
>>> sphere = rep.create.sphere(position=(100, 0, 100))
>>> with sphere:
...     rep.modify.visibility(False)
omni.replicator.core.modify.visibility
>>> with rep.trigger.on_frame(max_execs=10):
...    with sphere:
...        rep.modify.visibility(rep.distribution.sequence([True, False]))
omni.replicator.core.modify.visibility
omni.replicator.core.modify.register(fn: Callable[[...], Union[ReplicatorItem, Node]], override: bool = True, fn_name: Optional[str] = None) None

Register a new function under omni.replicator.core.modify. Extend the default capabilities of omni.replicator.core.modify by registering new functionality. New functions must return a ReplicatorItem or an OmniGraph node.

Parameters
  • fn – A function that returns a ReplicatorItem or an OmniGraph node.

  • override – If True, will override existing functions of the same name. If False, an error is raised.

  • fn_name – Optional, specify the registration name. If not specified, the function name is used. fn_name must only contains alphanumeric letters (a-z), numbers (0-9), or underscores (_), and cannot start with a number or contain any spaces.

Time

omni.replicator.core.modify.time(value: Union[float, ReplicatorItem]) ReplicatorItem

Set the timeline time value (in seconds).

Parameters

value – The value to set the time to.

Example

>>> import omni.replicator.core as rep
>>> with rep.trigger.on_frame(max_execs=10):
...     rep.modify.time(rep.distribution.uniform(0, 500))
omni.replicator.core.modify.time
omni.replicator.core.modify.timeline(value: Union[float, ReplicatorItem], modify_type: str = None) ReplicatorItem

Modify the timeline by frame number or time value (in seconds).

Parameters
  • value – The value to set the frame number or time to.

  • modify_type – The method with which to modify the timeline by. Valid types are [time, start_time, end_time, frame, start_frame, end_frame]

Example

>>> import omni.replicator.core as rep
>>> with rep.trigger.on_frame(max_execs=10):
...     rep.modify.timeline(rep.distribution.uniform(0, 500), "frame")
omni.replicator.core.modify.timeline

Randomizer

omni.replicator.core.randomizer.color(colors: Union[ReplicatorItem, List[Tuple[float]]], per_sub_mesh: bool = False, seed: int = None, input_prims: Union[ReplicatorItem, List[str]] = None) ReplicatorItem

Randomize colors Creates and binds an OmniPBR material to each prim in input_prims and randomizes colors.

Parameters
  • colors – List of colors, or a ReplicatorItem that outputs a list of colors. If supplied as a list, a choice sampler is automatically created to sample from the supplied color list.

  • per_sub_mesh – If True, bind a color to each mesh and geom_subset. If False, a color is bound only to the specified prim.

  • seed – If colors is specified as a list, optionally provide seed for color sampler. Unused if colors is a ReplicatorItem.

  • input_prims – List of input_prims. If constructing using with structure, set to None to bind input_prims to the current context.

Example

>>> import omni.replicator.core as rep
>>> cones = rep.create.cone(position=rep.distribution.uniform((-100,-100,-100),(100,100,100)), count=100)
>>> with cones:
...     rep.randomizer.color(colors=rep.distribution.uniform((0, 0, 0), (1, 1, 1)))
omni.replicator.core.randomizer.color
omni.replicator.core.randomizer.instantiate(paths: Union[ReplicatorItem, List[Union[str, Path, usdrt.Sdf.Path, Prim, ReplicatorItem]]], size: Union[ReplicatorItem, int], weights: List[float] = None, mode: str = 'scene_instance', with_replacements=True, seed: int = None, name: str = None, use_cache: bool = True, semantics: List[Tuple[str, str]] = None) ReplicatorItem

Sample size number of prims from the paths provided.

Parameters
  • paths – The list of USD paths pointing to the assets to sample from.

  • size – The number of samples to sample. NOTE: if the paths is a ReplicatorItem, size will be ignored.

  • weights – The weights to use for sampling. If provided, the length of weights must match the length of paths. If omitted, uniform sampling will be used. NOTE: if the paths is a ReplicatorItem, weights will be ignored.

  • mode – The instantiation mode. Choose from [scene_instance, point_instance, reference]. Defaults to scene_instance. Scene Instance creates a prototype in the cache, and new instances reference the prototype. Point Instances are best suited for situations requiring a very large number of samples, but only pose attributes can be modified per instance. Reference mode is used for asset references that need to be modified (WARNING: this mode has known material loading issue.)

  • with_replacements – When False, avoids duplicates when sampling. Default True. NOTE: if the paths is a ReplicatorItem, with_replacements will be ignored.

  • seed – Seed to use as initialization for the pseudo-random number generator. If not specified, the global seed will be used. NOTE: if the paths is a ReplicatorItem, seed will be ignored.

  • name – Optionally prepend a name to the population.

  • use_cache – If True, cache the assets in paths to speed up randomization. Set to False if the size of the population is too large to be cached. Default: True.

  • semantics – List of semantic type-label pairs.

Example

>>> import omni.replicator.core as rep
>>> usds = rep.utils.get_usd_files(rep.example.ASSETS_DIR)
>>> with rep.randomizer.instantiate(usds, size=100):
...     rep.modify.pose(position=rep.distribution.uniform((-50,-50,-50),(50,50,50)))
omni.replicator.core.modify.pose
omni.replicator.core.randomizer.materials(materials: Union[ReplicatorItem, List[str]], seed: int = None, max_cached_materials: int = 0, input_prims=None, name: Optional[str] = None) ReplicatorItem

Sample materials from provided materials and bind to the input_prims.

Note that binding materials is a relatively expensive operation. It is generally more efficient to modify materials already bound to prims.

Parameters
  • materials – The list of materials to sample from and bind to the input prims. The materials can be prim paths, MDL paths or a ReplicatorItem.

  • seed – Seed to use as initialization for the pseudo-random number generator. If not specified, the global seed will be used.

  • max_cached_materials – Maximum number of materials allowed to remain in the scene when not attached to a prim. A larger value allows more materials to remain in the scene, reducing the number of materials that need to be re-created each call at the expense of memory usage. Only applies to materials created from MDL paths specified in materials. The default value of 0 removes all cached materials at the end of each call.

  • input_prims – The prims to be modified. If using with syntax, this argument can be omitted.

  • name (optional) – A name for the graph node.

Example

>>> import omni.replicator.core as rep
>>> mats = rep.create.material_omnipbr(diffuse=rep.distribution.uniform((0,0,0), (1,1,1)), count=100)
>>> spheres = rep.create.sphere(
...     scale=0.2,
...     position=rep.distribution.uniform((-100,-100,-100), (100,100,100)),
...     count=100
... )
>>> with spheres:
...     rep.randomizer.materials(mats)
omni.replicator.core.randomizer.materials
omni.replicator.core.randomizer.rotation(min_angle: Tuple[float, float, float] = (-180.0, -180.0, -180.0), max_angle: Tuple[float, float, float] = (180.0, 180.0, 180.0), seed: int = None, input_prims: Union[ReplicatorItem, List[str]] = None) ReplicatorItem

Randomize the rotation of the input prims

This randomizer produces a truly uniformly distributed rotations to the input prims. In contrast, rotations are not truly uniformly distributed when simply sampling uniformly for each rotation axis.

Parameters
  • min_angle – Minimum value for Euler angles in XYZ form (degrees)

  • max_angle – Maximum value for Euler angles in XYZ form (degrees)

  • seed – Seed to use as initialization for the pseudo-random number generator. If not specified, the global seed will be used.

  • input_prims – The prims to be modified. If using with syntax, this argument can be omitted.

Example

>>> import omni.replicator.core as rep
>>> cubes = rep.create.cube(position=rep.distribution.uniform((-100,-100,-100),(100,100,100)), count=100)
>>> with cubes:
...     rep.randomizer.rotation()
omni.replicator.core.randomizer.rotation
omni.replicator.core.randomizer.scatter_2d(surface_prims: Union[ReplicatorItem, List[str]], no_coll_prims: Union[ReplicatorItem, List[str]] = None, min_samp: Tuple[float, float, float] = (None, None, None), max_samp: Tuple[float, float, float] = (None, None, None), seed: int = None, offset: int = 0, check_for_collisions: bool = False, input_prims: Union[ReplicatorItem, List[str]] = None, name: Optional[str] = None) ReplicatorItem

Scatter input prims across the surface of the specified surface prims.

Parameters
  • surface_prims – The prims across which to scatter the input prims. These can be meshes or GeomSubsets which specify a subset of a mesh’s polygons on which to scatter.

  • no_coll_prims – Existing prim(s) to prevent collisions with - if any prims are passed they will be checked for collisions which may slow down compute, regardless if check_for_collisions is True or False.

  • min_samp – The minimum position in global space to sample from.

  • max_samp – The maximum position in global space to sample from.

  • seed – Seed to use as initialization for the pseudo-random number generator. If not specified, the global seed will be used.

  • offset – The distance the prims should be offset along the normal of the surface of the mesh.

  • check_for_collisions

    Whether the scatter operation should ensure that objects are not intersecting.

    • 0: No collision checking (fastest)

    • 1: Check for collisions among the sampled input prims,

    • 2: No collision checking among sampled input prims, but compute collision convex meshes for all the prims on the stage by recursively traversing the stage, and make sure the sampled prims do not collide with any of them.

    • 3: Make sure the sampled prims don’t collide with anything (slowest)

  • input_prims – The prims to be modified. If using with syntax, this argument can be omitted.

  • name (optional) – A name for the graph node.

Example

>>> import omni.replicator.core as rep
>>> spheres = rep.create.sphere(count=100)
>>> surface_prim = rep.create.torus(scale=20, visible=False)
>>> with spheres:
...     rep.randomizer.scatter_2d(surface_prim)
omni.replicator.core.randomizer.scatter_2d
omni.replicator.core.randomizer.scatter_3d(volume_prims: Union[ReplicatorItem, List[str]] = None, no_coll_prims: Union[ReplicatorItem, List[str]] = None, volume_excl_prims: Union[ReplicatorItem, List[str]] = None, min_samp: Tuple[float, float, float] = (None, None, None), max_samp: Tuple[float, float, float] = (None, None, None), resolution_scaling: float = 1.0, voxel_size: float = 0.0, check_for_collisions: bool = False, prevent_vol_overlap: bool = True, viz_sampled_voxels: bool = False, seed: int = None, input_prims: Union[ReplicatorItem, List[str]] = None, name: Optional[str] = None) ReplicatorItem

Scatter input prims within the bounds of the specified volume prims.

Parameters
  • volume_prims – The prims within which to scatter the input prims. Currently, only meshes are supported, and they must be watertight. If no prims are provided, you must specify min_samp and max_samp bounds.

  • no_coll_prims – Existing prim(s) to prevent collisions with - if any prims are passed they will be checked for collisions using rejection sampling. This may slow down compute, regardless if check_for_collisions is True/False.

  • volume_excl_prims – Prim(s) from which to exclude from sampling. Must have watertight meshes. Similar effect to no_coll_prims, but more efficient and less accurate. Rather than performing rejection sampling based on collision with the provided volume (as no_coll_prims does), this prunes off the voxelized sampling space enclosed by volume_excl_prims so the rejection rate is 0 because it never tires to sample in the excluded space. However, some objects may get sampled very close to the edge of a mesh in volume_excl_prims, where the sampled root point is outside volume_excl_prims but parts of the mesh extend to overlap the space. To get the best of both worlds, you can pass the same volume prim to both no_coll_prims and to volume_excl_prims, providing a high accuracy and a low rejection rate.

  • min_samp – The minimum position in global space to sample from.

  • max_samp – The maximum position in global space to sample from.

  • resolution_scaling – Amount the default voxel resolution used in sampling should be scaled. More complex meshes may require higher resolution. Default voxel resolution is 30 for the longest side of the mean sized volumePrim mesh provided. Higher values will ensure more fine-grained voxels, but will come at the cost of performance.

  • voxel_size – Voxel size used to compute the resolution. If this is provided, then resolution_scaling is ignored, otherwise (if it is 0 by default) resolution_scaling is used.

  • check_for_collisions – Whether the scatter operation should ensure that sampled objects are not intersecting.

  • prevent_vol_overlap – If True, prevents double sampling even when multiple enclosing volumes overlap, so that the entire enclosed volume is sampled uniformly. If False, it allows overlapped sampling with higher density in overlapping areas.

  • viz_sampled_voxels – If True, creates semi-transparent green cubes in all voxels in the scene that the input prim positions are sampled from.

  • seed – Seed to use as initialization for the pseudo-random number generator. If not specified, the global seed will be used.

  • input_prims – The prims to be modified. If using with syntax, this argument can be omitted.

  • name (optional) – A name for the graph node.

Example

>>> import omni.replicator.core as rep
>>> spheres = rep.create.sphere(count=100)
>>> volume_prim = rep.create.torus(scale=20, visible=False)
>>> with spheres:
...     rep.randomizer.scatter_3d(volume_prim)
omni.replicator.core.randomizer.scatter_3d
omni.replicator.core.randomizer.texture(textures: Union[ReplicatorItem, List[str]], texture_scale: Union[ReplicatorItem, List[Tuple[float, float]]] = None, texture_rotate: Union[ReplicatorItem, List[int]] = None, per_sub_mesh: bool = False, project_uvw: bool = False, seed: int = None, input_prims: Union[ReplicatorItem, List[str]] = None) ReplicatorItem

Randomize texture Creates and binds an OmniPBR material to each prim in input_prims and modifies textures.

Parameters
  • textures – List of texture paths, or a ReplicatorItem that outputs a list of texture paths. If a list of texture paths is provided, they will be sampled uniformly using the global seed.

  • texture_scale – List of texture scales in (X, Y) represented by positive floats. Larger values will make the texture appear smaller on the asset.

  • texture_rotate – Rotation in degrees of the texture.

  • per_sub_mesh – If True, bind a material to each mesh and geom_subset. If False, a material is bound only to the specified prim.

  • project_uvw – When True, UV coordinates will be generated by projecting them from a coordinate system.

  • seed – Seed to use as initialization for the pseudo-random number generator. If not specified, the global seed will be used.

  • input_prims – List of input_prims. If constructing using with structure, set to None to bind input_prims to the current context.

Example

>>> import omni.replicator.core as rep
>>> with rep.create.cone(position=rep.distribution.uniform((-100,-100,-100),(100,100,100)), count=100):
...     rep.randomizer.texture(textures=rep.example.TEXTURES, texture_scale=[(0.5, 0.5)], texture_rotate=[45])
omni.replicator.core.randomizer.texture
omni.replicator.core.randomizer.register(fn: Callable[[...], Union[ReplicatorItem, Node]], override: bool = True, fn_name: Optional[str] = None) None

Register a new function under omni.replicator.core.randomizer. Extend the default capabilities of omni.replicator.core.randomizer by registering new functionality. New functions must return a ReplicatorItem or an OmniGraph node.

Parameters
  • fn – A function that returns a ReplicatorItem or an OmniGraph node.

  • fn_name – An optional arg that let user choose the function name when registering it in replicator.

  • override – If True, will override existing functions of the same name. If False, an error is raised.

  • fn_name – Optional, specify the registration name. If not specified, the function name is used. fn_name must only contains alphanumeric letters (a-z), numbers (0-9), or underscores (_), and cannot start with a number or contain any spaces.

Example

>>> import omni.replicator.core as rep
>>> def scatter_points(points):
...     return rep.modify.pose(position=rep.distribution.choice(points))
>>> rep.randomizer.register(scatter_points)
>>> with rep.create.cone():
...     rep.randomizer.scatter_points([(0, 0, 0), (0, 0, 100), (0, 0, 200)])
omni.replicator.core.randomizer.scatter_points

Physics

omni.replicator.core.physics.collider(approximation_shape: str = 'convexHull', contact_offset: float = None, rest_offset: float = None, input_prims: Union[ReplicatorItem, List] = None) None

Applies the Physx Collision API to the prims specified in input_prims.

Parameters
  • approximation_shape – The approximation used in the collider (by default, convex hull). Other approximations include “convexDecomposition”, “boundingSphere”, “boundingCube”, “meshSimplification”, and “none”. “none” will just use default mesh geometry.

  • contact_offset – Offset used when generating contact points. If it is None, it will determined by scene’s current meters_per_unit. Default: None.

  • rest_offset – Offset used when generating rest contact points. If it is None, it will determined by scene’s current meters_per_unit. Default: None.

  • input_prims – The prims to be modified. If using with syntax, this argument can be omitted.

Example

>>> import omni.replicator.core as rep
>>> with rep.create.cube():
...     rep.physics.collider()
omni.replicator.core.physics.collider
omni.replicator.core.physics.drive_properties(stiffness: Union[ReplicatorItem, float] = 0.0, damping: Union[ReplicatorItem, float] = 0.0, input_prims: Union[ReplicatorItem, List] = None) None

Applies the Drive API to the prims specified in input_prims, if necessary. Prims must be either revolute or prismatic joints. For D6 joint randomization, please refer to omni.replicator.core.modify.attribute and provide the exact attribute name of the drive parameter to be randomized.

Parameters
  • stiffness – The stiffness of the drive (unitless).

  • damping – The damping of the drive (unitless).

  • input_prims – The prims to be modified. If using with syntax, this argument can be omitted.

omni.replicator.core.physics.mass(mass: Optional[float] = None, density: Optional[float] = None, center_of_mass: Optional[List] = None, diagonal_inertia: Optional[List] = None, principal_axes: Optional[List] = None, input_prims: Union[ReplicatorItem, List] = None) None

Applies the Physx Mass API to the prims specified in input_prims, if necessary. This function sets up randomization parameters for various mass-related properties in the mass API.

Parameters
  • mass – The mass of the prim. By default mass is derived from the volume of the collision geometry multiplied by a density.

  • density – The density of the prim.

  • center_of_mass – Center of the mass of the prim in local coordinates.

  • diagonal_inertia – Constructs a diagonalized inertia tensor along the principal axes.

  • principal_axes – A quaternion (wxyz) representing the orientation of the principal axes in the local coordinate frame.

  • input_prims – The prims to be modified. If using with syntax, this argument can be omitted.

Example

>>> import omni.replicator.core as rep
>>> with rep.create.cube():
...     rep.physics.mass(mass=rep.distribution.uniform(1.0, 50.0))
omni.replicator.core.physics.mass
omni.replicator.core.physics.physics_material(static_friction: Union[ReplicatorItem, float] = None, dynamic_friction: Union[ReplicatorItem, float] = None, restitution: Union[ReplicatorItem, float] = None, input_prims: Union[ReplicatorItem, List] = None) None

If input prim is a material, the physics material API will be applied if necessary. Otherwise, if the prim has a bound material, then randomizations will be made on this material (where once again, with the physics material API being bound if necessary). If the prim does not have a bound material, then a physics material will be created at <prim_path>/PhysicsMaterial and bound at the prim.

Parameters
  • static_friction – Static friction coefficient (unitless).

  • dynamic_friction – Dynamic friction coefficient (unitless).

  • restitution – Restitution coefficient (unitless).

  • input_prims – The prims to be modified. If using with syntax, this argument can be omitted.

Example

>>> import omni.replicator.core as rep
>>> with rep.create.cube():
...     rep.physics.physics_material(
...         static_friction=rep.distribution.uniform(0.0, 1.0),
...         dynamic_friction=rep.distribution.uniform(0.0, 1.0),
...         restitution=rep.distribution.uniform(0.0, 1.0)
...     )
omni.replicator.core.physics.physics_material
omni.replicator.core.physics.rigid_body(velocity: Union[ReplicatorItem, Tuple[float, float, float]] = (0.0, 0.0, 0.0), angular_velocity: Union[ReplicatorItem, Tuple[float, float, float]] = (0.0, 0.0, 0.0), contact_offset: float = None, rest_offset: float = None, overwrite: bool = False, input_prims: Union[ReplicatorItem, List] = None) None

Randomizes the velocity and angular velocity of the prims specified in input_prims. If they do not have the RigidBodyAPI then one will be created for the prim.

Parameters
  • velocity – The velocity of the prim.

  • angular_velocty – The angular velocity of the prim (degrees / time).

  • contact_offset – Offset used when generating contact points. If it is None, it will determined by scene’s current meters_per_unit. Default: None.

  • rest_offset – Offset used when generating rest contact points. If it is None, it will determined by scene’s current meters_per_unit. Default: None.

  • overwrite – If True, apply rigid body to the input prim and remove any rigid body already applied to a descendent of the input prim. If False, rigid body is only be applied to the input prim if no descendent is already specified as a rigid body. This is because PhysX does not allow nested rigid body hierarchies.

  • input_prims – The prims to be modified. If using with syntax, this argument can be omitted.

Example

>>> import omni.replicator.core as rep
>>> with rep.create.cube():
...     rep.physics.rigid_body(
...         velocity=rep.distribution.uniform((0, 0, 0), (100, 100, 100)),
...         angular_velocity=rep.distribution.uniform((30, 30, 30), (300, 300, 300))
...     )
omni.replicator.core.physics.rigid_body

Annotators

omni.replicator.core.annotators.get(name: str, init_params: Optional[dict] = None, render_product_idxs: Optional[List[int]] = None, device: Optional[str] = None, do_array_copy: bool = True) Annotator

Get annotator from registry

Parameters
  • name – Name of annotator to be retrieved from registry

  • init_params – Annotator initialization parameters

  • render_product_idxs – Index of render products to utilize

  • device – If set, make annotator data available to specified device if possible. Select from ['cpu', 'cuda', 'cuda:<device_index>']. Defaults to cpu

  • do_array_copy – If True, retrieve a copy of the data array. This is recommended for workflows using asynchronous backends to manage the data lifetime. Can be set to False to gain performance if the data is expected to be used immediately within th writer. Defaults to True

omni.replicator.core.annotators.get_augmentation(name: str) Augmentation

Get Augmentation from registry

Parameters

name – Name of augmentation to retrieve from registry

omni.replicator.core.annotators.get_registered_annotators() List[str]

Returns a list names of registered annotators.

Returns

List of registered annotators.

omni.replicator.core.annotators.register(name: str, annotator: Union[Annotator, str]) None

Register annotator

Parameters
  • name – Name under which to register annotator

  • annotator – Annotator to be registered

omni.replicator.core.annotators.register_augmentation(name: str, augmentation: Union[Augmentation, str]) None

Register an augmentation operation.

Parameters
  • name – Name under which to register augmentation

  • augmentation – Augmentation to be registered. Can be specified as an Augmentation, the name of a registered augmentation or the node type id of an omnigraph node to be used as an augmentation.

Example

>>> import omni.replicator.core as rep
>>> def make_opaque(data_in):
...    data_in[..., 3] = 255
>>> rep.annotators.register_augmentation("makeOpaque", rep.annotators.Augmentation(make_opaque))
omni.replicator.core.annotators.unregister_augmentation(name: str) None

Unregister a registered augmentation

Parameters

name – Name of augmentation to unregister

class omni.replicator.core.annotators.Annotator(name: str, init_params: Optional[dict] = None, render_product_idxs: Optional[List[int]] = None, device: Optional[str] = None, render_products: Optional[list] = None, template_name: Optional[str] = None, do_array_copy: bool = True)

Annotator class Annotator instances identify the annotator name, it’s initialization parameters, the render products it is tied to, as well as the name of the OmniGraph template.

Initialization parameters can be overridden with initialize(), and render products can be set with attach(). Once attached, the data from an annotator can be retrieved with get_data().

Parameters
  • name – Annotator name

  • init_params – Optional parameters specifying the parameters to initialize the annotator with

  • render_product_idxs – Optionally specify the index of render products to utilize

  • device – If set, make annotator data available to specified device if possible. Select from ['cpu', 'cuda', 'cuda:<device_index>']. Defaults to cpu.

  • render_products[List] – If set, attach annotator to specified render products

  • template_name – Optional name of the template describing the annotator graph

  • do_array_copy – If True, retrieve a copy of the data array. This is recommended for workflows using asynchronous backends to manage the data lifetime. Can be set to False to gain performance if the data is expected to be used immediately within th writer. Defaults to True

class omni.replicator.core.annotators.AnnotatorRegistry

Registry of annotators providing groundtruth data to writers.

Default Annotators

The current annotators that are available through the registry are:

Annotators

Standard Annotators

RT Annotators

PathTracing Annotators

LdrColor/rgb

SmoothNormal

PtDirectIllumation

HdrColor

BumpNormal

PtGlobalIllumination

camera_params/CameraParams

Motion2d

PtReflections

normals

DiffuseAlbedo

PtRefractions

motion_vectors

SpecularAlbedo

PtSelfIllumination

cross_correspondence

Roughness

PtBackground

distance_to_image_plane

DirectDiffuse

PtWorldNormal

distance_to_camera

DirectSpecular

PtRefractionFilter

primPaths

Reflections

PtMultiMatte<0-7>

bounding_box_2d_tight_fast

IndirectDiffuse

PtWorldPos

bounding_box_2d_tight

DepthLinearized

PtZDepth

bounding_box_2d_loose_fast

EmissionAndForegroundMask

PtVolumes

bounding_box_2d_loose

AmbientOcclusion

PtDiffuseFilter

bounding_box_3d_360

PtReflectionFilter

bounding_box_3d_fast

bounding_box_3d

semantic_segmentation

instance_segmentation_fast

instance_segmentation

skeleton_data

pointcloud

CrossCorrespondence

MotionVectors

Occlusion

Some annotators support initialization parameters. For example, segmentation annotators can be parametrized with a colorize attribute specify the output format.

omni.replicator.core.annotators.get("semantic_segmentation", init_params={"colorize": True})

To see how annotators are used within a writer, we have prepared scripts that implement the basic writer which covers all standard annotators.

Standard Annotators

These annotators can be used in any rendering mode. Each annotator’s usage and outputs are described below.

LdrColor

Annotator Name: LdrColor, (alternative name: rgb)

The LdrColor or rgb annotator produces the low dynamic range output image as an array of type np.uint8 with shape (width, height, 4), where the four channels correspond to R,G,B,A.

Example

import omni.replicator.core as rep

async def test_ldr():
    # Add Default Light
    distance_light = rep.create.light(rotation=(315,0,0), intensity=3000, light_type="distant")

    cone = rep.create.cone()

    cam = rep.create.camera(position=(500,500,500), look_at=cone)
    rp = rep.create.render_product(cam, (1024, 512))

    ldr = rep.AnnotatorRegistry.get_annotator("LdrColor")
    ldr.attach(rp)

    await rep.orchestrator.step_async()
    data = ldr.get_data()
    print(data.shape, data.dtype)   # ((512, 1024, 4), uint8)

import asyncio
asyncio.ensure_future(test_ldr())
Normals

Annotator Name: normals

The normals annotator produces an array of type np.float32 with shape (height, width, 4). The first three channels correspond to (x, y, z). The fourth channel is unused.

Example

import omni.replicator.core as rep

async def test_normals():
    # Add Default Light
    distance_light = rep.create.light(rotation=(315,0,0), intensity=3000, light_type="distant")

    cone = rep.create.cone()

    cam = rep.create.camera(position=(500,500,500), look_at=cone)
    rp = rep.create.render_product(cam, (1024, 512))

    normals = rep.AnnotatorRegistry.get_annotator("normals")
    normals.attach(rp)

    await rep.orchestrator.step_async()
    data = normals.get_data()
    print(data.shape, data.dtype)   ~ ((512, 1024, 4), float32)

import asyncio
asyncio.ensure_future(test_normals())
Distance to Camera

Annotator Name: distance_to_camera

Outputs a depth map from objects to camera positions. The distance_to_camera annotator produces a 2d array of types np.float32 with 1 channel.

Data Details

  • The unit for distance to camera is in meters (For example, if the object is 1000 units from the camera, and the meters_per_unit variable of the scene is 100, the distance to camera would be 10).

  • 0 in the 2d array represents infinity (which means there is no object in that pixel).

Distance to Camera
Distance to Image Plane

Annotator Name: distance_to_image_plane

Outputs a depth map from objects to image plane of the camera. The distance_to_image_plane annotator produces a 2d array of types np.float32 with 1 channel.

Data Details

  • The unit for distance to image plane is in meters (For example, if the object is 1000 units from the image plane of the camera, and the meters_per_unit variable of the scene is 100, the distance to camera would be 10).

  • 0 in the 2d array represents infinity (which means there is no object in that pixel).

Distance to Image Plane
Motion Vectors

Annotator Name: motion_vectors

Outputs a 2D array of motion vectors representing the relative motion of a pixel in the camera’s viewport between frames.

The MotionVectors annotator returns the per-pixel motion vectors in in image space.

Output Format

array((height, width, 4), dtype=<np.float32>)

The components of each entry in the 2D array represent four different values encoded as floating point values:

  • x: motion distance in the horizontal axis (image width) with movement to the left of the image being positive and movement to the right being negative.

  • y: motion distance in the vertical axis (image height) with movement towards the top of the image being positive and movement to the bottom being negative.

  • z: unused

  • w: unused

Example

import asyncio
import omni.replicator.core as rep

async def test_motion_vectors():
    # Add an object to look at
    cone = rep.create.cone()

    # Add motion to object
    cone_prim = cone.get_output_prims()["prims"][0]
    cone_prim.GetAttribute("xformOp:translate").Set((-100, 0, 0), time=0.0)
    cone_prim.GetAttribute("xformOp:translate").Set((100, 50, 0), time=10.0)

    camera = rep.create.camera()
    render_product = rep.create.render_product(camera, (512, 512))

    motion_vectors_anno = rep.annotators.get("MotionVectors")
    motion_vectors_anno.attach(render_product)

    # Take a step to render the initial state (no movement yet)
    await rep.orchestrator.step_async()

    # Capture second frame (now the timeline is playing)
    await rep.orchestrator.step_async()
    data = motion_vectors_anno.get_data()
    print(data.shape, data.dtype, data.reshape(-1, 4).min(axis=0), data.reshape(-1, 4).max(axis=0))
    # (1024, 512, 4), float32,  [-93.80073  -1.       -1.       -1.     ] [ 0.       23.450201  1.        1.      ]

asyncio.ensure_future(test_motion_vectors())

Note

The values represent motion relative to camera space.

bounding_box_2d_tight_fast

Outputs tight 2d bounding box of each entity with semantics in the camera’s viewport. Tight bounding boxes bound only the visible pixels of entities. Completely occluded entities are ommited.

Initialization Parameters

  • semanticTypes: List of allowed semantic types the types. For example, if semantic_types is [“class”], only the bounding boxes for prims with semantics of type “class” will be retrieved.

Output Format

The bounding box annotator returns a dictionary with the bounds and semantic id found under the “data” key, while other information is under the “info” key: “idToLabels”, “bboxIds” and “primPaths”.

{
    "data": np.dtype(
                [
                    ("semanticId", "<u4"),
                    ("x_min", "<i4"),
                    ("y_min", "<i4"),
                    ("x_max", "<i4"),
                    ("y_max", "<i4"),
                ],
    "info": {
        "idToLabels": {<semanticId>: <semantic_labels>},    # mapping from integer semantic ID to a comma delimited list of associated semantics
        "bboxIds": [<bbox_id_0>, ..., <bbox_id_n>],         # ID specific to bounding box annotators allowing easy mapping between different bounding box annotators.
        "primPaths": [<prim_path_0>, ... <prim_path_n>],    # prim path tied to each bounding box
    }
}

Note

bounding_box_2d_tight_fast bounds only visible pixels.

Example

import omni.replicator.core as rep

async def test_bbox_2d_tight_fast():
    cone = rep.create.cone(semantics=[("prim", "cone")], position=(100, 0, 0))
    sphere = rep.create.sphere(semantics=[("prim", "sphere")], position=(-100, 0, 0))
    invalid_type = rep.create.cube(semantics=[("shape", "boxy")], position=(0, 100, 0))

    cam = rep.create.camera(position=(500,500,500), look_at=cone)
    rp = rep.create.render_product(cam, (1024, 512))

    bbox_2d_tight_fast = rep.AnnotatorRegistry.get_annotator("bounding_box_2d_tight_fast", init_params={"semanticTypes": ["prim"]})
    bbox_2d_tight_fast.attach(rp)

    await rep.orchestrator.step_async()
    data = bbox_2d_tight_fast.get_data()
    print(data)

    # {
    #   'data': array([
    #       (0, 442, 198, 581, 357, 0.),
    #       (1, 245,  94, 368, 220, 0.38),
    #       dtype=[('semanticId', '<u4'),
    #              ('x_min', '<i4'),
    #              ('y_min', '<i4'),
    #              ('x_max', '<i4'),
    #              ('y_max', '<i4'),
    #              ('occlusionRatio', '<f4')]),
    #   'info': {
    #       'bboxIds': array([0, 1], dtype=uint32),
    #       'idToLabels': {'0': {'prim': 'cone'}, '1': {'prim': 'sphere'}},
    #       'primPaths': ['/Replicator/Cone_Xform', '/Replicator/Sphere_Xform']}
    #   }
    # }

import asyncio
asyncio.ensure_future(test_bbox_2d_tight_fast())
bounding_box_2d_tight

Outputs tight 2d bounding box of each entity with semantics in the camera’s viewport. Tight bounding boxes bound only the visible pixels of entities. Completely occluded entities are ommited.

Initialization Parameters

  • semanticTypes: List of allowed semantic types the types. For example, if semantic_types is [“class”], only the bounding boxes for prims with semantics of type “class” will be retrieved.

Output Format

The bounding box annotator returns a dictionary with the bounds and semantic id found under the “data” key, while other information is under the “info” key: “idToLabels”, “bboxIds” and “primPaths”.

{
    "data": np.dtype(
                [
                    ("semanticId", "<u4"),
                    ("x_min", "<i4"),
                    ("y_min", "<i4"),
                    ("x_max", "<i4"),
                    ("y_max", "<i4"),
                    ("occlusionRatio", "<f4"),
                ],
    "info": {
        "idToLabels": {<semanticId>: <semantic_labels>},    # mapping from integer semantic ID to a comma delimited list of associated semantics
        "bboxIds": [<bbox_id_0>, ..., <bbox_id_n>],         # ID specific to bounding box annotators allowing easy mapping between different bounding box annotators.
        "primPaths": [<prim_path_0>, ... <prim_path_n>],    # prim path tied to each bounding box
    }
}

Note

bounding_box_2d_tight bounds only visible pixels.

Example

import omni.replicator.core as rep

async def test_bbox_2d_tight():
    cone = rep.create.cone(semantics=[("prim", "cone")], position=(100, 0, 0))
    sphere = rep.create.sphere(semantics=[("prim", "sphere")], position=(-100, 0, 0))
    invalid_type = rep.create.cube(semantics=[("shape", "boxy")], position=(0, 100, 0))

    cam = rep.create.camera(position=(500,500,500), look_at=cone)
    rp = rep.create.render_product(cam, (1024, 512))

    bbox_2d_tight = rep.AnnotatorRegistry.get_annotator("bounding_box_2d_tight", init_params={"semanticTypes": ["prim"]})
    bbox_2d_tight.attach(rp)

    await rep.orchestrator.step_async()
    data = bbox_2d_tight.get_data()
    print(data)
    # {
    #   'data': array([
    #       (0, 442, 198, 581, 357, 0.),
    #       (1, 245,  94, 368, 220, 0.38),
    #       dtype=[('semanticId', '<u4'),
    #              ('x_min', '<i4'),
    #              ('y_min', '<i4'),
    #              ('x_max', '<i4'),
    #              ('y_max', '<i4')]),
    #              ("occlusionRatio", "<f4"),
    #   'info': {
    #       'bboxIds': array([0, 1], dtype=uint32),
    #       'idToLabels': {'0': {'prim': 'cone'}, '1': {'prim': 'sphere'}},
    #       'primPaths': ['/Replicator/Cone_Xform', '/Replicator/Sphere_Xform']}
    #   }
    # }

import asyncio
asyncio.ensure_future(test_bbox_2d_tight())
bounding_box_2d_loose_fast

Outputs loose 2d bounding box of each entity with semantics in the camera’s field of view. Loose bounding boxes bound the entire entity regardless of occlusions.

Initialization Parameters

  • semanticTypes: List of allowed semantic types the types. For example, if semantic_types is [“class”], only the bounding boxes for prims with semantics of type “class” will be retrieved.

Output Format

The bounding box annotator returns a dictionary with the bounds and semantic id found under the “data” key, while other information is under the “info” key: “idToLabels”, “bboxIds” and “primPaths”.

{
    "data": np.dtype(
                [
                    ("semanticId", "<u4"),
                    ("x_min", "<i4"),
                    ("y_min", "<i4"),
                    ("x_max", "<i4"),
                    ("y_max", "<i4"),
                    ("occlusionRatio", "<f4"),
                ],
    "info": {
        "idToLabels": {<semanticId>: <semantic_labels>},    # mapping from integer semantic ID to a comma delimited list of associated semantics
        "bboxIds": [<bbox_id_0>, ..., <bbox_id_n>],         # ID specific to bounding box annotators allowing easy mapping between different bounding box annotators.
        "primPaths": [<prim_path_0>, ... <prim_path_n>],    # prim path tied to each bounding box
    }
}

Note

bounding_box_2d_loose will produce the loose 2d bounding box of any prim in the viewport, no matter if is partially occluded or fully occluded.

Example

import omni.replicator.core as rep

async def test_bbox_2d_loose_fast():
    cone = rep.create.cone(semantics=[("prim", "cone")], position=(100, 0, 0))
    sphere = rep.create.sphere(semantics=[("prim", "sphere")], position=(-100, 0, 0))
    invalid_type = rep.create.cube(semantics=[("shape", "boxy")], position=(0, 100, 0))

    cam = rep.create.camera(position=(500,500,500), look_at=cone)
    rp = rep.create.render_product(cam, (1024, 512))

    bbox_2d_loose_fast = rep.AnnotatorRegistry.get_annotator("bounding_box_2d_loose_fast", init_params={"semanticTypes": ["prim"]})
    bbox_2d_loose_fast.attach(rp)

    await rep.orchestrator.step_async()
    data = bbox_2d_loose_fast.get_data()
    print(data)
    # {
    #   'data': array([
    #       (0, 442, 198, 581, 357, 0.),
    #       (1, 245,  92, 375, 220, 0.38),
    #       dtype=[('semanticId', '<u4'),
    #              ('x_min', '<i4'),
    #              ('y_min', '<i4'),
    #              ('x_max', '<i4'),
    #              ('y_max', '<i4')]),
    #              ("occlusionRatio", "<f4"),
    #   'info': {
    #       'bboxIds': array([0, 1], dtype=uint32),
    #       'idToLabels': {'0': {'prim': 'cone'}, '1': {'prim': 'sphere'}},
    #       'primPaths': ['/Replicator/Cone_Xform', '/Replicator/Sphere_Xform']}
    #   }
    # }

import asyncio
asyncio.ensure_future(test_bbox_2d_loose_fast())
bounding_box_2d_loose

Outputs loose 2d bounding box of each entity with semantics in the camera’s field of view. Loose bounding boxes bound the entire entity regardless of occlusions.

Initialization Parameters

  • semanticTypes: List of allowed semantic types the types. For example, if semantic_types is [“class”], only the bounding boxes for prims with semantics of type “class” will be retrieved.

Output Format

The bounding box annotator returns a dictionary with the bounds and semantic id found under the “data” key, while other information is under the “info” key: “idToLabels”, “bboxIds” and “primPaths”.

{
    "data": np.dtype(
                [
                    ("semanticId", "<u4"),
                    ("x_min", "<i4"),
                    ("y_min", "<i4"),
                    ("x_max", "<i4"),
                    ("y_max", "<i4"),
                    ("occlusionRatio", "<f4"),
                ],
    "info": {
        "idToLabels": {<semanticId>: <semantic_labels>},    # mapping from integer semantic ID to a comma delimited list of associated semantics
        "bboxIds": [<bbox_id_0>, ..., <bbox_id_n>],         # ID specific to bounding box annotators allowing easy mapping between different bounding box annotators.
        "primPaths": [<prim_path_0>, ... <prim_path_n>],    # prim path tied to each bounding box
    }
}

Note

bounding_box_2d_loose will produce the loose 2d bounding box of any prim in the viewport, no matter if is partially occluded or fully occluded.

Example

import omni.replicator.core as rep

async def test_bbox_2d_loose():
    cone = rep.create.cone(semantics=[("prim", "cone")], position=(100, 0, 0))
    sphere = rep.create.sphere(semantics=[("prim", "sphere")], position=(-100, 0, 0))
    invalid_type = rep.create.cube(semantics=[("shape", "boxy")], position=(0, 100, 0))

    cam = rep.create.camera(position=(500,500,500), look_at=cone)
    rp = rep.create.render_product(cam, (1024, 512))

    bbox_2d_loose = rep.AnnotatorRegistry.get_annotator("bounding_box_2d_loose", init_params={"semanticTypes": ["prim"]})
    bbox_2d_loose.attach(rp)

    await rep.orchestrator.step_async()
    data = bbox_2d_loose.get_data()
    print(data)
    # {
    #   'data': array([
    #       (0, 442, 198, 581, 357, 0.),
    #       (1, 245,  92, 375, 220, 0.38),
    #       dtype=[('semanticId', '<u4'),
    #              ('x_min', '<i4'),
    #              ('y_min', '<i4'),
    #              ('x_max', '<i4'),
    #              ('y_max', '<i4')]),
    #              ("occlusionRatio", "<f4"),
    #   'info': {
    #       'bboxIds': array([0, 1], dtype=uint32),
    #       'idToLabels': {'0': {'prim': 'cone'}, '1': {'prim': 'sphere'}},
    #       'primPaths': ['/Replicator/Cone_Xform', '/Replicator/Sphere_Xform']}
    #   }
    # }

import asyncio
asyncio.ensure_future(test_bbox_2d_loose())
bounding_box_3d_360

Outputs 3D bounding box of each entity with semantics for the entire world including outside the sensor’s field of view

Initialization Parameters

  • None

Output Format

The bounding box annotator returns a dictionary with the bounds and semantic id found under the “data” key, while other information is under the “info” key: “idToLabels”, “bboxIds” and “primPaths”.

{
    "data": np.dtype(
                [
                    ('x_min', '<f4'),               # Minimum bound in x axis in local reference frame (in world units)
                    ('y_min', '<f4'),               # Minimum bound in y axis in local reference frame (in world units)
                    ('z_min', '<f4'),               # Minimum bound in z axis in local reference frame (in world units)
                    ('x_max', '<f4'),               # Maximum bound in x axis in local reference frame (in world units)
                    ('y_max', '<f4'),               # Maximum bound in y axis in local reference frame (in world units)
                    ('z_max', '<f4'),               # Maximum bound in z axis in local reference frame (in world units)
                    ('transform', '<f4', (4, 4)),   # Local to world transformation matrix (transforms the bounds from local frame to world frame)
                    ('occlusionRatio', '<f4')]),    # Occlusion (visible pixels / total pixels), where `0.0` is fully visible and `1.0` is fully occluded. See additional notes below.
                ],
    "info": {
        "idToLabels": {<semanticId>: <semantic_labels>},    # mapping from integer semantic ID to a comma delimited list of associated semantics
        "bboxIds": [<bbox_id_0>, ..., <bbox_id_n>],         # ID specific to bounding box annotators allowing easy mapping between different bounding box annotators.
        "primPaths": [<prim_path_0>, ... <prim_path_n>],    # prim path tied to each bounding box
    }
}

Note

  • bounding boxes are retrieved regardless of occlusion.

  • bounding box dimensions (<axis>_min, <axis>_max) are expressed in stage units.

  • occlusionRatio can only provide valid values for prims composed of a single mesh. Multi-mesh labelled prims will return a value of -1 indicating that no occlusion value is available.

Example

import omni.replicator.core as rep

async def test_bbox_3d_360():
    cone = rep.create.cone(semantics=[("prim", "cone")], position=(100, 0, 0))
    sphere = rep.create.sphere(semantics=[("prim", "sphere")], position=(-100, 0, 0))
    cube = rep.create.cube(semantics=[("prim", "cube")], position=(1000, 1000, 1000))

    cam = rep.create.camera(position=(500,500,500), look_at=cone)
    rp = rep.create.render_product(cam, (1024, 512))

    bbox_3d_360 = rep.AnnotatorRegistry.get_annotator("bounding_box_3d_360")
    bbox_3d_360.attach(rp)

    await rep.orchestrator.step_async()
    data = bbox_3d_360.get_data()
    print(data)
    #   {
    #       'data': array([
    #           (0, -50., -50., -50., 50., 50., 50., [[   1.,    0.,    0.,    0.], [   0.,    1.,    0.,    0.], [   0.,    0.,    1.,    0.], [ 100.,    0.,    0.,    1.]], 0.  ),
    #           (1, -50., -50., -50., 50., 50., 50., [[   1.,    0.,    0.,    0.], [   0.,    1.,    0.,    0.], [   0.,    0.,    1.,    0.], [-100.,    0.,    0.,    1.]], 0.38)],
    #           (2, -50., -50., -50., 50., 50., 50., [[   1.,    0.,    0.,    0.], [   0.,    1.,    0.,    0.], [   0.,    0.,    1.,    0.], [1000., 1000., 1000.,    1.]], nan)],
    #           dtype=[
    #               ('semanticId', '<u4'),
    #               ('x_min', '<f4'),
    #               ('y_min', '<f4'),
    #               ('z_min', '<f4'),
    #               ('x_max', '<f4'),
    #               ('y_max', '<f4'),
    #               ('z_max', '<f4'),
    #               ('transform', '<f4', (4, 4)),
    #               ('occlusionRatio', '<f4')]),
    #       'info': {
    #           'bboxIds': array([0, 1, 2], dtype=uint32),
    #           'idToLabels': {0: {'prim': 'cone'}, 1: {'prim': 'sphere'}, 2: {'prim': 'cube'}},
    #           'primPaths': ['/Replicator/Cone_Xform', '/Replicator/Sphere_Xform', '/Replicator/Cube_Xform']
    #       }
    #   }

import asyncio
asyncio.ensure_future(test_bbox_3d_360())
bounding_box_3d_fast

Outputs 3D bounding box of each entity with semantics for entities within the sensor’s field of view.

Initialization Parameters

  • None

Output Format

The bounding box annotator returns a dictionary with the bounds and semantic id found under the “data” key, while other information is under the “info” key: “idToLabels”, “bboxIds” and “primPaths”.

{
    "data": np.dtype(
                [
                    ("semanticId", "<u4"),
                    ("x_min", "<i4"),
                    ("y_min", "<i4"),
                    ("x_max", "<i4"),
                    ("y_max", "<i4"),
                    ("z_min", "<i4"),
                    ("z_max", "<i4"),
                    ("transform", "<i4"),
                ],
    "info": {
        "idToLabels": {<semanticId>: <semantic_labels>},    # mapping from integer semantic ID to a comma delimited list of associated semantics
        "bboxIds": [<bbox_id_0>, ..., <bbox_id_n>],         # ID specific to bounding box annotators allowing easy mapping between different bounding box annotators.
        "primPaths": [<prim_path_0>, ... <prim_path_n>],    # prim path tied to each bounding box
    }
}

Note

  • bounding boxes are retrieved regardless of occlusion.

  • bounding box dimensions (<axis>_min, <axis>_max) are expressed in stage units.

Example

import omni.replicator.core as rep

async def test_bbox_3d_fast():
    cone = rep.create.cone(semantics=[("prim", "cone")], position=(100, 0, 0))
    sphere = rep.create.sphere(semantics=[("prim", "sphere")], position=(-100, 0, 0))
    cube = rep.create.cube(semantics=[("prim", "cube")], position=(1000, 1000, 1000))

    cam = rep.create.camera(position=(500,500,500), look_at=cone)
    rp = rep.create.render_product(cam, (1024, 512))

    bbox_3d_fast = rep.AnnotatorRegistry.get_annotator("bounding_box_3d_fast")
    bbox_3d_fast.attach(rp)

    await rep.orchestrator.step_async()
    data = bbox_3d_fast.get_data()
    print(data)
    #   {
    #       'data': array([
    #           (0, -50., -50., -50., 50., 50., 50., [[   1.,    0.,    0.,    0.], [   0.,    1.,    0.,    0.], [   0.,    0.,    1.,    0.], [ 100.,    0.,    0.,    1.]], 0.  ),
    #           (1, -50., -50., -50., 50., 50., 50., [[   1.,    0.,    0.,    0.], [   0.,    1.,    0.,    0.], [   0.,    0.,    1.,    0.], [-100.,    0.,    0.,    1.]], 0.38)],
    #           dtype=[
    #               ('semanticId', '<u4'),
    #               ('x_min', '<f4'),
    #               ('y_min', '<f4'),
    #               ('z_min', '<f4'),
    #               ('x_max', '<f4'),
    #               ('y_max', '<f4'),
    #               ('z_max', '<f4'),
    #               ('transform', '<f4', (4, 4)),
    #               ('occlusionRatio', '<f4')]),
    #       'info': {
    #           'bboxIds': array([0, 1, 2], dtype=uint32),
    #           'idToLabels': {0: {'prim': 'cone'}, 1: {'prim': 'sphere'}}},
    #           'primPaths': ['/Replicator/Cone_Xform', '/Replicator/Sphere_Xform']
    #       }
    #   }

import asyncio
asyncio.ensure_future(test_bbox_3d_fast())
bounding_box_3d

Outputs 3D bounding box of each entity with semantics for entities within the sensor’s field of view.

Initialization Parameters

  • None

Output Format

The bounding box annotator returns a dictionary with the bounds and semantic id found under the “data” key, while other information is under the “info” key: “idToLabels”, “bboxIds” and “primPaths”.

{
    "data": np.dtype(
                [
                    ("semanticId", "<u4"),
                    ("x_min", "<i4"),
                    ("y_min", "<i4"),
                    ("x_max", "<i4"),
                    ("y_max", "<i4"),
                    ("z_min", "<i4"),
                    ("z_max", "<i4"),
                    ("transform", "<i4"),
                ],
    "info": {
        "idToLabels": {<semanticId>: <semantic_labels>},    # mapping from integer semantic ID to a comma delimited list of associated semantics
        "bboxIds": [<bbox_id_0>, ..., <bbox_id_n>],         # ID specific to bounding box annotators allowing easy mapping between different bounding box annotators.
        "primPaths": [<prim_path_0>, ... <prim_path_n>],    # prim path tied to each bounding box
    }
}

Note

  • bounding boxes are retrieved regardless of occlusion.

  • bounding box dimensions (<axis>_min, <axis>_max) are expressed in stage units.

Example

import omni.replicator.core as rep

async def test_bbox_3d():
    cone = rep.create.cone(semantics=[("prim", "cone")], position=(100, 0, 0))
    sphere = rep.create.sphere(semantics=[("prim", "sphere")], position=(-100, 0, 0))
    cube = rep.create.cube(semantics=[("prim", "cube")], position=(1000, 1000, 1000))

    cam = rep.create.camera(position=(500,500,500), look_at=cone)
    rp = rep.create.render_product(cam, (1024, 512))

    bbox_3d = rep.AnnotatorRegistry.get_annotator("bounding_box_3d")
    bbox_3d.attach(rp)

    await rep.orchestrator.step_async()
    data = bbox_3d.get_data()
    print(data)
    #   {
    #       'data': array([
    #           (0, -50., -50., -50., 50., 50., 50., [[   1.,    0.,    0.,    0.], [   0.,    1.,    0.,    0.], [   0.,    0.,    1.,    0.], [ 100.,    0.,    0.,    1.]], 0.  ),
    #           (1, -50., -50., -50., 50., 50., 50., [[   1.,    0.,    0.,    0.], [   0.,    1.,    0.,    0.], [   0.,    0.,    1.,    0.], [-100.,    0.,    0.,    1.]], 0.38)],
    #           dtype=[
    #               ('semanticId', '<u4'),
    #               ('x_min', '<f4'),
    #               ('y_min', '<f4'),
    #               ('z_min', '<f4'),
    #               ('x_max', '<f4'),
    #               ('y_max', '<f4'),
    #               ('z_max', '<f4'),
    #               ('transform', '<f4', (4, 4)),
    #               ('occlusionRatio', '<f4')]),
    #       'info': {
    #           'bboxIds': array([0, 1, 2], dtype=uint32),
    #           'idToLabels': {0: {'prim': 'cone'}, 1: {'prim': 'sphere'}}},
    #           'primPaths': ['/Replicator/Cone_Xform', '/Replicator/Sphere_Xform']
    #       }
    #   }

import asyncio
asyncio.ensure_future(test_bbox_3d())
instance_id_segmentation_fast

Development segmentation node Instance segmentation that returns the renderer instance ID - used for debugging

instance_id_segmentation
Development segmentation node

Instance segmentation that returns the renderer instance ID - used for debugging

instance_segmentation_fast

Outputs instance segmentation of each entity in the camera’s viewport. Only semantically labelled entities are returned.

Initialization Parameters

  • Colorize (bool): whether to output colorized instance segmentation or non-colorized one.

Output Format

{
    "data": array((height, width), dtype=<np.uint32>),

    "info": {
        "idToLabels": {<semanticId>: <prim_path>},    # mapping from instance ID to the instance's prim path
        "idToSemantic":{<instanceId>: <semantic_labels>},    # mapping from instance ID to a comma delimited list of associated semantics
    }
}

Note

  • Two prims with same semantic labels but live in different USD path will have different ids.

  • If two prims have no semantic labels, and they have a same parent which has semantic labels, they will be classified as the same instance.

  • The semantic labels of an entity will be the semantic labels of itself, plus all the semantic labels it inherit from its parent and semantic labels with same type will be concatenated, separated by comma. For example, if an entity has a semantic label of [{“class”: “cube”}], and its parent has [{“class”: “rectangle”}]. Then the final semantic labels of that entity will be [{“class”: “rectangle, cube”}].

import omni.replicator.core as rep

async def test_instance_segmentation_fast():
    cone = rep.create.cone(semantics=[("prim", "cone")], position=(100, 0, 0))
    sphere = rep.create.sphere(semantics=[("prim", "sphere")], position=(-100, 0, 0))
    invalid_type = rep.create.cube(semantics=[("shape", "boxy")], position=(0, 100, 0))

    cam = rep.create.camera(position=(500,500,500), look_at=cone)
    rp = rep.create.render_product(cam, (1024, 512))

    instance_seg = rep.AnnotatorRegistry.get_annotator("instance_segmentation_fast")
    instance_seg.attach(rp)

    await rep.orchestrator.step_async()
    data = instance_seg.get_data()
    print(data)
    # {
    #   'data': array([[0, 0, 0, ..., 0, 0, 0],
    #       [0, 0, 0, ..., 0, 0, 0],
    #       [0, 0, 0, ..., 0, 0, 0],
    #       ...,
    #       [0, 0, 0, ..., 0, 0, 0],
    #       [0, 0, 0, ..., 0, 0, 0],
    #       [0, 0, 0, ..., 0, 0, 0]],
    #   'info': {
    #       'idToLabels': {'idToLabels': {0: 'BACKGROUND', 1: 'UNLABELLED', 3: '/Replicator/Sphere_Xform', 2: '/Replicator/Cone_Xform', 4: '/Replicator/Cube_Xform'},
    #       'idToSemantics': {0: {'class': 'BACKGROUND'}, 1: {'class': 'UNLABELLED'}, 3: {'prim': 'sphere'}, 2: {'prim': 'cone'}, 4: {'shape': 'boxy'}}
    #   }
    # }

import asyncio
asyncio.ensure_future(test_instance_segmentation_fast())
instance_segmentation

Outputs instance segmentation of each entity in the camera’s viewport. Only semantically labelled entities are returned.

Initialization Parameters

  • Colorize (bool): whether to output colorized instance segmentation or non-colorized one.

Output Format

{
    "data": array((height, width), dtype=<np.uint32>),

    "info": {
        "idToLabels": {<semanticId>: <prim_path>},    # mapping from instance ID to the instance's prim path
        "idToSemantic":{<instanceId>: <semantic_labels>},    # mapping from instance ID to a comma delimited list of associated semantics
    }
}

Note

  • Two prims with same semantic labels but live in different USD path will have different ids.

  • If two prims have no semantic labels, and they have a same parent which has semantic labels, they will be classified as the same instance.

  • The semantic labels of an entity will be the semantic labels of itself, plus all the semantic labels it inherit from its parent and semantic labels with same type will be concatenated, separated by comma. For example, if an entity has a semantic label of [{“class”: “cube”}], and its parent has [{“class”: “rectangle”}]. Then the final semantic labels of that entity will be [{“class”: “rectangle, cube”}].

import omni.replicator.core as rep

async def test_instance_segmentation():
    cone = rep.create.cone(semantics=[("prim", "cone")], position=(100, 0, 0))
    sphere = rep.create.sphere(semantics=[("prim", "sphere")], position=(-100, 0, 0))
    invalid_type = rep.create.cube(semantics=[("shape", "boxy")], position=(0, 100, 0))

    cam = rep.create.camera(position=(500,500,500), look_at=cone)
    rp = rep.create.render_product(cam, (1024, 512))

    instance_seg = rep.AnnotatorRegistry.get_annotator("instance_segmentation")
    instance_seg.attach(rp)

    await rep.orchestrator.step_async()
    data = instance_seg.get_data()
    print(data)
    # {
    #   'data': array([[0, 0, 0, ..., 0, 0, 0],
    #       [0, 0, 0, ..., 0, 0, 0],
    #       [0, 0, 0, ..., 0, 0, 0],
    #       ...,
    #       [0, 0, 0, ..., 0, 0, 0],
    #       [0, 0, 0, ..., 0, 0, 0],
    #       [0, 0, 0, ..., 0, 0, 0]],
    #   'info': {
    #       'idToLabels': {'idToLabels': {'0': 'BACKGROUND', '1': 'UNLABELLED', '3': '/Replicator/Sphere_Xform', '2': '/Replicator/Cone_Xform', '4': '/Replicator/Cube_Xform'},
    #       'idToSemantics': {'0': {'class': 'BACKGROUND'}, '1': {'class': 'UNLABELLED'}, '3': {'prim': 'sphere'}, '2': {'prim': 'cone'}, '4': {'shape': 'boxy'}}
    #   }
    # }

import asyncio
asyncio.ensure_future(test_instance_segmentation())
semantic_segmentation

Outputs semantic segmentation of each entity in the camera’s field of view that has semantic labels.

Initialization Parameters

  • Colorize (bool): whether to output colorized semantic segmentation or non-colorized one.

Output Format

{
    "data": array((height, width), dtype=<np.uint32>),

    "info": {
        "idToLabels": {<semanticId>: <semantic_labels>},    # mapping from semantic ID to a comma delimited list of associated semantics
    }
}
  • data (semantic segmentation array):
    • If colorize is set to True, the image will be a 2d array of types np.uint8 with 4 channels. The uint32 array can be converted using semantic_seg_data[“data”].view(np.uint8).reshape(height, width, -1)

    • Different colors represent different semantic labels.

    • If colorize is set to False, the image will be a 2d array of types np.uint32 with 1 channel, which is the semantic id of the entities.

  • info:
    • idToLabels

    • If colorize is set to True, it will be the mapping from color to semantic labels.

    • If colorize is set to False, it will be the mapping from semantic id to semantic labels.

Note

The semantic labels of an entity will be the semantic labels of itself, plus all the semantic labels it inherit from its parent and semantic labels with same type will be concatenated, separated by comma. For example, if an entity has a semantic label of [{“class”: “cube”}], and its parent has [{“class”: “rectangle”}]. Then the final semantic labels of that entity will be [{“class”: “rectangle, cube”}].

import omni.replicator.core as rep

async def test_semantic_segmentation():
    cone = rep.create.cone(semantics=[("prim", "cone")], position=(100, 0, 0))
    sphere = rep.create.sphere(semantics=[("prim", "sphere")], position=(-100, 0, 0))
    invalid_type = rep.create.cube(semantics=[("shape", "boxy")], position=(0, 100, 0))

    cam = rep.create.camera(position=(500,500,500), look_at=cone)
    rp = rep.create.render_product(cam, (1024, 512))

    semantic_seg = rep.AnnotatorRegistry.get_annotator("semantic_segmentation")
    semantic_seg.attach(rp)

    await rep.orchestrator.step_async()
    data = semantic_seg.get_data()
    print(data)
    # {
    #   'data': array([[0, 0, 0, ..., 0, 0, 0],
    #       [0, 0, 0, ..., 0, 0, 0],
    #       [0, 0, 0, ..., 0, 0, 0],
    #       ...,
    #       [0, 0, 0, ..., 0, 0, 0],
    #       [0, 0, 0, ..., 0, 0, 0],
    #       [0, 0, 0, ..., 0, 0, 0]],
    #   'info': {
    #       'idToLabels': {'0': {'class': 'BACKGROUND'}, '2': {'prim': 'cone'}, '3': {'shape': 'boxy'}, '4': {'prim': 'sphere'}}
    #   }
    # }

import asyncio
asyncio.ensure_future(test_semantic_segmentation())
CameraParams

The Camera Parameters annotator returns the camera details for the camera corresponding to the render product to which the annotator is attached.

Data Details

  • cameraFocalLength: Camera focal length

  • cameraFocusDistance: Camera focus distance

  • cameraFStop: Camera fStop value

  • cameraAperture: Camera horizontal and vertical aperture

  • cameraApertureOffset: Camera horizontal and vertical aperture offset

  • renderProductResolution: RenderProduct resolution

  • cameraModel: Camera model name

  • cameraViewTransform: Camera to world transformation matrix

  • cameraProjection: Camera projection matrix

  • cameraFisheyeNominalWidth: Camera fisheye nominal width

  • cameraFisheyeNominalHeight: Camera fisheye nominal height

  • cameraFisheyeOpticalCentre: Camera fisheye optical centre

  • cameraFisheyeMaxFOV: Camera fisheye maximum field of view

  • cameraFisheyePolynomial: Camera fisheye polynomial

  • cameraNearFar: Camera near/far clipping range

Example

import asyncio
import omni.replicator.core as rep

async def test_camera_params():
    camera_1 = rep.create.camera()
    camera_2 = rep.create.camera(
        position=(100, 0, 0),
        projection_type="fisheye_polynomial"
    )

    render_product_1 = rep.create.render_product(camera_1, (1024, 512))
    render_product_2 = rep.create.render_product(camera_2, (800, 600))


    anno_1 = rep.annotators.get("CameraParams").attach(render_product_1)
    anno_2 = rep.annotators.get("CameraParams").attach(render_product_2)

    await rep.orchestrator.step_async()

    print(anno_1.get_data())
    # {'cameraAperture': array([20.95 , 15.29], dtype=float32),
    #     'cameraApertureOffset': array([0., 0.], dtype=float32),
    #     'cameraFisheyeLensP': array([], dtype=float32),
    #     'cameraFisheyeLensS': array([], dtype=float32),
    #     'cameraFisheyeMaxFOV': 0.0,
    #     'cameraFisheyeNominalHeight': 0,
    #     'cameraFisheyeNominalWidth': 0,
    #     'cameraFisheyeOpticalCentre': array([0., 0.], dtype=float32),
    #     'cameraFisheyePolynomial': array([0., 0., 0., 0., 0.], dtype=float32),
    #     'cameraFocalLength': 24.0,
    #     'cameraFocusDistance': 400.0,
    #     'cameraFStop': 0.0,
    #     'cameraModel': 'pinhole',
    #     'cameraNearFar': array([1., 1000000.], dtype=float32),
    #     'cameraProjection': array([ 2.29,  0.  ,  0.  ,  0.  ,
    #                                 0.  ,  4.58,  0.  ,  0.  ,
    #                                 0.  ,  0.  ,  0.  , -1.  ,
    #                                 0.  ,  0.  ,  1.  ,  0.  ]),
    #     'cameraViewTransform': array([1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1.]),
    #     'metersPerSceneUnit': 0.009999999776482582,
    #     'renderProductResolution': array([1024, 512], dtype=int32)
    # }

    print(anno_2.get_data())
    # {
    #     'cameraAperture': array([20.955 , 15.291], dtype=float32),
    #     'cameraApertureOffset': array([0., 0.], dtype=float32),
    #     'cameraFisheyeLensP': array([-0., -0.], dtype=float32),
    #     'cameraFisheyeLensS': array([-0., -0.,  0., -0.], dtype=float32),
    #     'cameraFisheyeMaxFOV': 200.0,
    #     'cameraFisheyeNominalHeight': 1216,
    #     'cameraFisheyeNominalWidth': 1936,
    #     'cameraFisheyeOpticalCentre': array([970.9424, 600.375 ], dtype=float32),
    #     'cameraFisheyePolynomial': array([0.     , 0.002, 0.     , 0.     , 0.     ], dtype=float32),
    #     'cameraFocalLength': 24.0,
    #     'cameraFocusDistance': 400.0,
    #     'cameraFStop': 0.0,
    #     'cameraModel': 'fisheyePolynomial',
    #     'cameraNearFar': array([1., 1000000.], dtype=float32),
    #     'cameraProjection': array([ 2.29,  0.  ,  0.  ,  0.  ,
    #                                 0.  ,  3.05,  0.  ,  0.  ,
    #                                 0.  ,  0.  ,  0.  , -1.  ,
    #                                 0.  ,  0.  ,  1.  ,  0.  ]),
    #     'cameraViewTransform': array([1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 0., -100., 0., 0., 1.]),
    #   'metersPerSceneUnit': 0.009999999776482582,
    #   'renderProductResolution': array([800, 600], dtype=int32)
    #  }

asyncio.ensure_future(test_camera_params())
skeleton_data

The skeleton data annotator outputs pose information about the skeletons in the scene view.

Output Format

Parameter

Data Type

Description

animationVariant

list(<num_skeletons>, dtype=str)

Animation variant name for each skeleton

assetPath

list(<num_skeletons>, dtype=str)

Asset path for each skeleton

globalTranslations

array((<num_joints>, 3), dtype=float32)

Global translation of each joint

globalTranslationsSizes

array(<num_skeletons>, dtype=int32)

Size of each set of joints per skeleton

inView

array(<num_skeletons>, dtype=bool)

If the skeleton is in view of the camera

jointOcclusions

array(<num_joints>, dtype=bool)

For each joint, True if joint is occluded, otherwise False

jointOcclusionsSizes

array(<num_skeletons>, dtype=int32)

Size of each set of joints per skeleton

localRotations

array((<num_joints>, 4), dtype=float32)

Local rotation of each joint

localRotationsSizes

array(<num_skeletons>, dtype=int32)

Size of each set of joints per skeleton

numSkeletons

<num_skeletons>

Number of skeletons in scene

occlusionTypes

list(str)

For each joint, the type of occlusion

occlusionTypesSizes

array([<num_skeletons>], dtype=int32)

Size of each set of joints per skeleton

restGlobalTranslations

array((<num_joints>, 3), dtype=float32)

Global translation for each joint at rest

restGlobalTranslationsSizes

array([<num_skeletons>], dtype=int32)

Size of each set of joints per skeleton

restLocalRotations

array((<num_joints>, 4), dtype=float32)

Local rotation of each join at rest

restLocalRotationsSizes

array(<num_skeletons>, dtype=int32)

Size of each set of joints per skeleton

restLocalTranslations

array((<num_joints>, 3), dtype=float32)

Local translation of each join at rest

restLocalTranslationsSizes

array(<num_skeletons>, dtype=int32)

Size of each set of joints per skeleton

skeletonJoints

list(str)

List of skeleton joints, encoded as a string

skeletonParents

array(<num_joints>, dtype=int32)

Which joint is the parent of the index, -1 is root

skeletonParentsSizes

array(<num_skeletons>, dtype=int32)

Size of each set of joints per skeleton

skelName

list(<num_skeletons>, dtype=str)

Name of each skeleton

skelPath

list(<num_skeletons>, dtype=str)

Path of each skeleton prim

translations2d

array((<num_joints>, 2), dtype=float32)

Screen space joint position in pixels

translations2dSizes

array(<num_skeletons>, dtype=int32)

Size of each set of joints per skeleton

This annotator returns additional data as a single string held in a dictionary with the key skeleton_data for backwards compatibility with the original implementation of this annotator. Use eval(data["skeleton_data"]) to extract the attributes from this string.

Example

Below is an example script that outputs 10 images with skeleton pose annotation.

import asyncio
import omni.replicator.core as rep

# Define paths for the character
PERSON_SRC = 'omniverse://localhost/NVIDIA/Assets/Characters/Reallusion/Worker/Worker.usd'

async def test_skeleton_data():
    # Human Model
    person = rep.create.from_usd(PERSON_SRC, semantics=[('class', 'person')])
    # Area to scatter cubes in
    area = rep.create.cube(scale=2, position=(0.0, 0.0, 100.0), visible=False)

    # Create the camera and render product
    camera = rep.create.camera(position=(25, -421.0, 182.0), rotation=(77.0, 0.0, 3.5))
    render_product = rep.create.render_product(camera, (1024, 1024))

    def randomize_spheres():
        spheres = rep.create.sphere(scale=0.1, count=100)
        with spheres:
            rep.randomizer.scatter_3d(area)
        return spheres.node

    rep.randomizer.register(randomize_spheres)

    with rep.trigger.on_frame(interval=10, max_execs=5):
        rep.randomizer.randomize_spheres()

    # Attach annotator
    skeleton_anno = rep.annotators.get("skeleton_data")
    skeleton_anno.attach(render_product)

    await rep.orchestrator.step_async()

    data = skeleton_anno.get_data()
    print(data)
    # {
    #     'animationVariant': ['None'],
    #     'assetPath': ['Bones/Worker.StandingDiscussion_LookingDown_M.usd'],
    #     'globalTranslations': array([[  0.  ,   0.  ,   0.  ], ..., [-21.64,   2.58, 129.8 ]], dtype=float32),
    #     'globalTranslationsSizes': array([101], dtype=int32),
    #     'inView': array([ True]),
    #     'jointOcclusions': array([ True, False, ..., False, False]),
    #     'jointOcclusionsSizes': array([101], dtype=int32),
    #     'localRotations': array([[ 1.  ,  0.  ,  0.  ,  0.  ], ..., [ 1.  ,  0.  , -0.09, -0.  ]], dtype=float32),
    #     'localRotationsSizes': array([101], dtype=int32),
    #     'numSkeletons': 1,
    #     'occlusionTypes': ["['BACKGROUND', 'None', ..., 'None', 'None']"],
    #     'occlusionTypesSizes': array([101], dtype=int32),
    #     'restGlobalTranslations': array([[  0.  ,   0.  ,   0.  ], ..., [-31.86,   8.96, 147.72]], dtype=float32),
    #     'restGlobalTranslationsSizes': array([101], dtype=int32),
    #     'restLocalRotations': array([[ 1.  ,  0.  ,  0.  ,  0.  ], ..., [ 1.  ,  0.  ,  0.  , -0.  ]], dtype=float32),
    #     'restLocalRotationsSizes': array([101], dtype=int32),
    #     'restLocalTranslations': array([[  0.  ,   0.  ,   0.  ], ..., [ -0.  ,  12.92,   0.01]], dtype=float32),
    #     'restLocalTranslationsSizes': array([101], dtype=int32),
    #     'skeletonJoints': ["['RL_BoneRoot', 'RL_BoneRoot/Hip', ..., 'RL_BoneRoot/Hip/Waist/Spine01/Spine02/R_Clavicle/R_Upperarm/R_UpperarmTwist01/R_UpperarmTwist02']"],
    #     'skeletonParents': array([-1,  0,  1, ..., 97, 78, 99], dtype=int32),
    #     'skeletonParentsSizes': array([101], dtype=int32),
    #     'skelName': ['Worker'],
    #     'skelPath': ['/Replicator/Ref_Xform/Ref/ManRoot/Worker/Worker'],
    #     'translations2d': array([[513.94, 726.03],
    #                              [514.42, 480.42],
    #                              [514.42, 480.42],
    #                              ...,
    #                              [499.45, 450.9 ],
    #                              [466.3 , 354.6 ],
    #                              [455.09, 388.56]], dtype=float32),
    #    'translations2dSizes': array([101], dtype=int32),
    #    'skeletonData': ...   # string data representation for backward compatibility
    # }

asyncio.ensure_future(test_skeleton_data())
pointcloud

Outputs a 2D array of shape (N, 3) representing the points sampled on the surface of the prims in the viewport, where N is the number of point.

Output Format

The pointcloud annotator returns positions of the points found under the “data” key, while other information is under the “info” key: “pointRgb”, “pointNormals”, “pointSemantic” and “pointInstance”.

{
    'data': array([...], shape=(<num_points>, 3), dtype=float32),
    'info': {
        'pointNormals': array([...], shape=(<num_points> * 4), dtype=float32),
        'pointRgb': array([...], shape=(<num_points> * 4), dtype=uint8),
        'pointSemantic': array([...], shape=(<num_points>), dtype=uint8),
        'pointInstance': array([...], shape=(<num_points>), dtype=uint8),
    }
}

Data Details

  • Point positions are in the world space.

  • Sample resolution is determined by the resolution of the render product.

Note

To get the mapping from semantic id to semantic labels, pointcloud annotator is better used with semantic segmentation annotator, and users can extract the idToLabels data from the semantic segmentation annotator.

Example 1

Pointcloud annotator captures prims seen in the camera, and sampled the points on the surface of the prims, based on the resolution of the render product attached to the camera. Additional to the points sampled, it also outputs rgb, normals and semantic id values associated to the prim where that point belongs to. For prims without any valid semantic labels, pointcloud annotator will ignore it.

import asyncio
import omni.replicator.core as rep

async def test_pointcloud():
    # Pointcloud only capture prims with valid semantics
    W, H = (1024, 512)
    cube = rep.create.cube(position=(0, 0, 0), semantics=[("class", "cube")])
    camera = rep.create.camera(position=(200., 200., 200.), look_at=cube)
    render_product = rep.create.render_product(camera, (W, H))

    pointcloud_anno = rep.annotators.get("pointcloud")
    pointcloud_anno.attach(render_product)

    await rep.orchestrator.step_async()

    pc_data = pointcloud_anno.get_data()
    print(pc_data)
    # {
    #   'data': array([[-49.96,  50.  , -49.28],
    #                  [-49.74,  50.  , -49.51],
    #                  [-49.51,  50.  , -49.74],
    #                  ...,
    #                  [ 50.  , -49.33,  27.51],
    #                  [ 50.  , -49.67,  27.08],
    #                  [ 50.  , -50.  ,  26.65]], dtype=float32),
    #   'info': {
    #       'pointNormals': array([ 0.,  1., -0., ...,  0., -0.,  1.], dtype=float32),
    #       'pointRgb': array([154, 154, 154, ...,  24,  24, 255], dtype=uint8),
    #       'pointSemantic': array([2, 2, 2, ..., 2, 2, 2], dtype=uint8)},
    #       'pointInstance': array([1, 1, 1, ..., 1, 1, 1], dtype=uint8)}
    # }

asyncio.ensure_future(test_pointcloud())

Example 2

In this example, we demonstrate a scenario where multiple camera captures are taken to produce a more complete pointcloud, utilizing the excellent open3d library to export a coloured ply file.

import os
import asyncio
import omni.replicator.core as rep
import open3d as o3d
import numpy as np

async def test_pointcloud():
    # Pointcloud only capture prims with valid semantics
    cube = rep.create.cube(semantics=[("class", "cube")])
    camera = rep.create.camera()
    render_product = rep.create.render_product(camera, (1024, 512))

    pointcloud_anno = rep.annotators.get("pointcloud")
    pointcloud_anno.attach(render_product)

    # Camera positions to capture the cube
    camera_positions = [(500, 500, 0), (-500, -500, 0), (500, 0, 500), (-500, 0, -500)]

    with rep.trigger.on_frame(max_execs=len(camera_positions)):
        with camera:
            rep.modify.pose(position=rep.distribution.sequence(camera_positions), look_at=cube)  # make the camera look at the cube

    # Accumulate points
    points = []
    points_rgb = []
    for _ in range(len(camera_positions)):
        await rep.orchestrator.step_async()

        pc_data = pointcloud_anno.get_data()
        points.append(pc_data["data"])
        points_rgb.append(pc_data["info"]["pointRgb"].reshape(-1, 4)[:, :3])

    # Output pointcloud as .ply file
    ply_out_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "out")
    os.makedirs(ply_out_dir, exist_ok=True)

    pc_data = np.concatenate(points)
    pc_rgb = np.concatenate(points_rgb)

    pcd = o3d.geometry.PointCloud()
    pcd.points = o3d.utility.Vector3dVector(pc_data)
    pcd.colors = o3d.utility.Vector3dVector(pc_rgb)
    o3d.io.write_point_cloud(os.path.join(ply_out_dir, "pointcloud.ply"), pcd)

asyncio.ensure_future(test_pointcloud())
ReferenceTime

Outputs the reference time corresponding to the render and associated annotations.

Output Format

The reference time annotator returns a numerator and denominator representing the time corresponding to the render and associated annotations.

{
    'referenceTimeNumerator': int,
    'referenceTimeDenominator': int,
}

Example

import asyncio
import omni.replicator.core as rep

async def test_reference_time():
    W, H = (1024, 512)
    camera = rep.create.camera()
    render_product = rep.create.render_product(camera, (W, H))

    ref_time_anno = rep.annotators.get("ReferenceTime")
    ref_time_anno.attach(render_product)

    await rep.orchestrator.step_async()

    ref_time_data = ref_time_anno.get_data()
    print(ref_time_data)
    # {
    #   'referenceTimeNumerator': <numerator>,
    #   'referenceTimeDenominator': <denominator>,
    # }

asyncio.ensure_future(test_reference_time())
CrossCorrespondence

The cross correspondence annotator outputs a 2D array representing the camera optical flow map of the camera’s viewport against a reference viewport.

To enable the cross correspondance annotation, the camera attached to the render product annotated with cross correspondance must have the attribute crossCameraReferenceName set to the (unique) name (not path) of a second camera (itself attached to a second render product). The Projection Type of the two cameras needs to be of type fisheyePolynomial (Camera –> Fisheye Lens –> Projection Type –> fisheyePolynomial).

Output Format

The Cross Correspondence annotator produces the cross correspondence between pixels seen from two cameras.

The components of each entry in the 2D array represent for different values encoded as floating point values:

  • x: dx - difference to the x value of of the corresponding pixel in the reference viewport. This value is normalized to [-1.0, 1.0]

  • y: dy - difference to the y value of of the corresponding pixel in the reference viewport. This value is normalized to [-1.0, 1.0]

  • z: occlusion mask - boolean signifying that the pixel is occluded or truncated in one of the cross referenced viewports. Floating point value represents a boolean (1.0 = True, 0.0 = False)

  • w: geometric occlusion calculated - boolean signifying that the pixel can or cannot be tested as having occluded geometry (e.g. no occlusion testing is performed on missed rays) (1.0 = True, 0.0 = False)

array((height, width, 4), dtype=<np.float32>)

Example

import asyncio
import omni.replicator.core as rep
from pxr import Sdf

async def test_cross_correspondence():
    # Add an object to look at
    rep.create.cone()

    # Add stereo camera pair
    stereo = rep.create.stereo_camera(position=(20, 0, 300), projection_type="fisheye_polynomial", stereo_baseline=20)

    # Add cross correspondence attribute
    stereo_L_prim = stereo.get_output_prims()["prims"][0].GetChildren()[0].GetChildren()[0]
    stereo_L_prim.CreateAttribute("crossCameraReferenceName", Sdf.ValueTypeNames.String)

    # Set attribute to refer to second camera name - beware of scenes with multiple cameras that share the same name!
    stereo_L_prim.GetAttribute("crossCameraReferenceName").Set("StereoCam_R")

    render_products = rep.create.render_product(stereo, (512, 512))

    # Add annotator to left render product
    anno = rep.annotators.get("cross_correspondence")
    anno.attach(render_products[0])

    await rep.orchestrator.step_async()
    data = anno.get_data()
    print(data.shape, data.dtype)
    # (512, 512, 4), float32

asyncio.ensure_future(test_cross_correspondence())

Note

  • Both cameras must have the cameraProjectionType attribute set to fisheyePolynomial

  • The annotated camera must have the crossCameraReferenceName attribute set to the name of the second camera

  • To avoid unexpected results, ensure that the referenced camera has a unique name

MotionVectors

Outputs a 2D array of motion vectors representing the relative motion of a pixel in the camera’s viewport between frames.

The MotionVectors annotator returns the per-pixel motion vectors in in image space.

Output Format

array((height, width, 4), dtype=<np.float32>)

The components of each entry in the 2D array represent for different values encoded as floating point values:

  • x: motion distance in the horizontal axis (image width) with movement to the left of the image being positive and movement to the right being negative.

  • y: motion distance in the vertical axis (image height) with movement towards the top of the image being positive and movement to the bottom being negative.

  • z: unused

  • w: unused

Example

import asyncio
import omni.replicator.core as rep

async def test_motion_vectors():
    # Add an object to look at
    cone = rep.create.cone()

    # Add motion to object
    cone_prim = cone.get_output_prims()["prims"][0]
    cone_prim.GetAttribute("xformOp:translate").Set((-100, 0, 0), time=0.0)
    cone_prim.GetAttribute("xformOp:translate").Set((100, 50, 0), time=10.0)

    camera = rep.create.camera()
    render_product = rep.create.render_product(camera, (512, 512))

    motion_vectors_anno = rep.annotators.get("MotionVectors")
    motion_vectors_anno.attach(render_product)

    # Take a step to render the initial state (no movement yet)
    await rep.orchestrator.step_async()

    # Capture second frame (now the timeline is playing)
    await rep.orchestrator.step_async()
    data = motion_vectors_anno.get_data()
    print(data.shape, data.dtype, data.reshape(-1, 4).min(axis=0), data.reshape(-1, 4).max(axis=0))
    # (1024, 512, 4), float32,  [-93.80073  -1.       -1.       -1.     ] [ 0.       23.450201  1.        1.      ]

asyncio.ensure_future(test_motion_vectors())

Note

The values represent motion relative to camera space.

Attribute

Outputs the value of an attribute attached to one of more prims.

The Attribute annotator retrieves the attribute value(s) of one or more prims at the time of render. On attach, the attribute specified will be automatically pushed to Fabric to ensure it can be retrieved. Note that the output type of the attribute must be identical in all specified prims.

Output Format

array((attribute_size x number_of_prims, 1))

The Attribute annotator retrieves the data from the attribute and flattens them, creating a 1D array of shape (attribute_size x number_of_prims, 1).

Currently it can retrieve the attribute with following Sdf data types:

  • Int, IntArray, Int2, Int2Array, Int3, Int3Array

  • Float, FloatArray, Float2, Float2Array, Float3, Float3Array

  • Double, DoubleArray, Double2, Double2Array, Double3, Double3Array

Example

import asyncio
import omni.replicator.core as rep
from pxr import Sdf

async def test_attribute_anno():
    cube1 = rep.create.cube(as_mesh=False)
    cube2 = rep.create.cube(as_mesh=False)
    cube_prim_path = "/Replicator/Cube_Xform/Cube"
    cube_prim_path_2 = "/Replicator/Cube_Xform_01/Cube"

    for path in [cube_prim_path, cube_prim_path_2]:
        stage = omni.usd.get_context().get_stage()
        cube_prim = stage.GetPrimAtPath(path)
        cube_prim.CreateAttribute("float2Arr", Sdf.ValueTypeNames.Float2Array).Set([(12.34, 56.78), (56.78, 12.34)])

    await omni.kit.app.get_app().next_update_async()

    rp = rep.create.render_product("/OmniverseKit_Persp", (1024, 1024))

    fabric_reader_anno = rep.annotators.get(
        "Attribute",
        init_params={
            "prims": [cube_prim_path, cube_prim_path_2],
            "attribute": "float2Arr",
        },
    )
    fabric_reader_anno.attach(rp)

    await rep.orchestrator.step_async()

    data = fabric_reader_anno.get_data()
    print(data, data.shape, data.dtype)
    # [12.34 56.78 56.78 12.34 12.34 56.78 56.78 12.34] (8,) float32

asyncio.ensure_future(test_attribute_anno())

RT Annotators

RT Annotators are only available in RayTracedLighting rendering mode (RTX - Real-Time)

Example

import asyncio
import omni.replicator.core as rep

async def test_pt_anno():
    # Set rendermode to PathTracing
    rep.settings.set_render_rtx_realtime()

    # Create an interesting scene
    red_diffuse = rep.create.material_omnipbr(diffuse=(1, 0, 0.2), roughness=1.0)
    metallic_reflective = rep.create.material_omnipbr(roughness=0.01, metallic=1.0)
    glow = rep.create.material_omnipbr(emissive_color=(1.0, 0.5, 0.4), emissive_intensity=100000.0)
    rep.create.cone(material=metallic_reflective)
    rep.create.cube(position=(100, 50, -100), material=red_diffuse)
    rep.create.sphere(position=(-100, 50, 100), material=glow)
    ground = rep.create.plane(scale=(100, 1, 100), position=(0, -50, 0))

    # Attach render product
    W, H = (1024, 512)
    camera = rep.create.camera(position=(400., 400., 400.), look_at=ground)
    render_product = rep.create.render_product(camera, (W, H))

    anno = rep.annotators.get("SmoothNormal")
    anno.attach(render_product)

    await rep.orchestrator.step_async()

    data = anno.get_data()
    print(data.shape, data.dtype)
    # (512, 1024, 4), float32

asyncio.ensure_future(test_pt_anno())
SmoothNormal

Output Format

np.ndtype(np.float32)   # shape: (H, W, 4)
BumpNormal

Output Format

np.ndtype(np.float32)   # shape: (H, W, 4)
AmbientOcclusion

Output Format

np.ndtype(np.float16)   # shape: (H, W, 4)
Motion2d

Output Format

np.ndtype(np.float32)   # shape: (H, W, 4)
DiffuseAlbedo

Output Format

np.ndtype(np.uint8) # shape: (H, W, 4)
SpecularAlbedo

Output Format

np.ndtype(np.float16)   # shape: (H, W, 4)
Roughness

Output Format

np.ndtype(np.uint8) # shape: (H, W, 4)
DirectDiffuse

Output Format

np.ndtype(np.float16)   # shape: (H, W, 4)
DirectSpecular

Output Format

np.ndtype(np.float16)   # shape: (H, W, 4)
Reflections

Output Format

np.ndtype(np.float32)   # shape: (H, W, 4)
IndirectDiffuse

Output Format

np.ndtype(np.float16)   # shape: (H, W, 4)
DepthLinearized

Output Format

np.ndtype(np.float32)   # shape: (H, W, 1)
EmissionAndForegroundMask

Output Format

np.ndtype(np.float16)   # shape: (H, W, 1)

PathTracing Annotators

PathTracing Annotators are only available in PathTracing rendering mode (RTX - Interactive). In addition, the following carb settings must be set on app launch:

  • rtx-transient.aov.enableRtxAovs = true

  • rtx-transient.aov.enableRtxAovsSecondary = true

Example

import asyncio
import omni.replicator.core as rep

async def test_pt_anno():
    # Set rendermode to PathTracing
    rep.settings.set_render_pathtraced()

    # Create an interesting scene
    red_diffuse = rep.create.material_omnipbr(diffuse=(1, 0, 0.2), roughness=1.0)
    metallic_reflective = rep.create.material_omnipbr(roughness=0.01, metallic=1.0)
    glow = rep.create.material_omnipbr(emissive_color=(1.0, 0.5, 0.4), emissive_intensity=100000.0)
    rep.create.cone(material=metallic_reflective)
    rep.create.cube(position=(100, 50, -100), material=red_diffuse)
    rep.create.sphere(position=(-100, 50, 100), material=glow)
    ground = rep.create.plane(scale=(100, 1, 100), position=(0, -50, 0))

    # Attach render product
    W, H = (1024, 512)
    camera = rep.create.camera(position=(400., 400., 400.), look_at=ground)
    render_product = rep.create.render_product(camera, (W, H))

    anno = rep.annotators.get("PtGlobalIllumination")
    anno.attach(render_product)

    await rep.orchestrator.step_async()

    data = anno.get_data()
    print(data.shape, data.dtype)
    # (512, 1024, 4), float16

asyncio.ensure_future(test_pt_anno())
PtDirectIllumation

Output Format

np.ndtype(np.float16)   # Shape: (Height, Width, 4)
PtGlobalIllumination

Output Format

np.ndtype(np.float16)   # Shape: (Height, Width, 4)
PtReflections

Output Format

np.ndtype(np.float16)   # Shape: (Height, Width, 4)
PtRefractions

Output Format

np.ndtype(np.float16)   # Shape: (Height, Width, 4)
PtSelfIllumination

Output Format

np.ndtype(np.float16)   # Shape: (Height, Width, 4)
PtBackground

Output Format

np.ndtype(np.float16)   # Shape: (Height, Width, 4)
PtWorldNormal

Output Format

np.ndtype(np.float16)   # Shape: (Height, Width, 4)
PtWorldPos

Output Format

np.ndtype(np.float16)   # Shape: (Height, Width, 4)
PtZDepth

Output Format

np.ndtype(np.float16)   # Shape: (Height, Width, 4)
PtVolumes

Output Format

np.ndtype(np.float16)   # Shape: (Height, Width, 4)
PtDiffuseFilter

Output Format

np.ndtype(np.float16)   # Shape: (Height, Width, 4)
PtReflectionFilter

Output Format

np.ndtype(np.float16)   # Shape: (Height, Width, 4)
PtRefractionFilter

Output Format

np.ndtype(np.float16)   # Shape: (Height, Width, 4)
PtMultiMatte0

Output Format

np.ndtype(np.float16)   # Shape: (Height, Width, 4)
PtMultiMatte1

Output Format

np.ndtype(np.float16)   # Shape: (Height, Width, 4)
PtMultiMatte2

Output Format

np.ndtype(np.float16)   # Shape: (Height, Width, 4)
PtMultiMatte3

Output Format

np.ndtype(np.float16)   # Shape: (Height, Width, 4)
PtMultiMatte4

Output Format

np.ndtype(np.float16)   # Shape: (Height, Width, 4)
PtMultiMatte5

Output Format

np.ndtype(np.float16)   # Shape: (Height, Width, 4)
PtMultiMatte6

Output Format

np.ndtype(np.float16)   # Shape: (Height, Width, 4)
PtMultiMatte7

Output Format

np.ndtype(np.float16)   # Shape: (Height, Width, 4)

Annotator Exceptions

exception omni.replicator.core.annotators.AnnotatorError(msg=None)

Bases: Exception

Base exception for errors raised by annotator

exception omni.replicator.core.annotators.AnnotatorRegistryError(msg=None)

Bases: Exception

Base exception for errors raised by the annotator registry

exception omni.replicator.core.annotators.AugmentationError(msg=None)

Bases: Exception

Base exception for errors raised by augmentation

Annotator Utils

class omni.replicator.core.utils.annotator_utils.AnnotatorCache

Cache static annotator parameters to improve performance

Accessing OmniGraph attributes is relatively expensive. Cache static attributes where possible to improve performance in certain scenarios.

annotators = {}
classmethod get_data(annotator_id: int, node_params: Dict, annotator_params: Tuple, target_device: str, **kwargs)

Retrieve annotator array data.

Parameters
  • annotator_id – Unique annotator identifier.

  • node_params – Node parameters.

  • annotator_params – Annotator parameters as an AnnotatorParams object.

  • target_device – Target device onto white to return the data (eg. “cpu”, “cuda:0”)

classmethod get_common_params(annotator_id: int, node_params: Dict, annotator_params: Tuple, target_device: str, use_cache: bool = False)

Get annotator common parameters.

Retrieves common parameters that rarely change so they can be cached for faster data retrieval.

Parameters
  • annotator_id – Unique annotator identifier.

  • node_params – Node parameters.

  • annotator_params – Annotator parameters as an AnnotatorParams object.

  • target_device – Target device onto white to return the data (eg. “cpu”, “cuda:0”)

  • use_cache – If True, cache common params for faster data retrieval. Defaults to False.

classmethod clear(annotator_id: Optional[int] = None)

Clear cache

Parameters

annotator_id – Optionally specify the annotator to clear from the cache. If None, clear entire cache. Defaults to None.

omni.replicator.core.utils.annotator_utils.get_extra_data(params: Dict)

Get all other annotator outputs, excluding array data.

Parameters

params – Annotator parameters

omni.replicator.core.utils.annotator_utils.get_annotator_data(node: Node, annotator_params: Tuple, from_inputs: bool = False, device: str = 'cpu', annotator_id: Optional[Tuple[str]] = None, do_copy: bool = False, use_legacy_structure: bool = True) Dict

Retrieve data from annotator node.

Parameters
  • node – The OmniGraph annotator node object from which to retrieve data.

  • annotator_params – AnnotatorParams tuple specifying annotator metadata.

  • from_inputs – If True, annotator data is extracted from the node inputs. Defaults to False.

  • device – Specifies the device onto white to return array data. Valid values: ["cpu", "cuda", "cuda:<index>"] Defaults to "cpu".

  • annotator_id – Unique annotator identifier. Defaults to None.

  • do_copy – If True, arrays are copied before being returned. This copy ensures that the data lifetime can be managed by downstream processes. Defaults to False.

  • use_legacy_structure

    Specifies the output structure to return. If True, the legacy structure is returned. The legacy structure changes depending on the data being returned:

    • only array data: <array>

    • only non-array data: {<anno_attribute_0>: <anno_output_0>, <anno_attribute_n>: <aanno_output_n>}

    • array data and non-array data: {“data”: <array>, “info”: {<anno_attribute_0>: <anno_output_0>, <anno_attribute_n>: <aanno_output_n>}}

    If False, a consistent data structure is returned:

    • all cases: {<anno_attribute_0>: <anno_output_0>, <anno_attribute_n>: <anno_output_n>}

    Defaults to True.

omni.replicator.core.utils.annotator_utils.script_node_check(nodes: list = [])

Prompt user before enabling a script node

Call this script in any node capable of executing arbitrary scripts within the node’s initialize() call.

Note

Only one prompt attempt is made per session

omni.replicator.core.utils.annotator_utils.check_should_run_script()

Augmentations

class omni.replicator.core.annotators.Augmentation(node_type_id: str, data_out_shape: Optional[Tuple[int]] = None, documentation: Optional[str] = None, **kwargs)

Augmentation class

Augmentations are defined by a python function or warp kernel which manipulates the array held in a required data_in argument. Augmentations can be applied to any annotator which outputs a data attribute along with corresponding width and height attributes.

Parameters
  • augmentation

    Python function or Warp kernel describing the augmentation operation. Details on required and supported optional arguments as follows:

    • data_in: Required by both python and warp augmentations and is populated with the input data array

    • data_out: Required by warp functions, holds the output array. Not supported in conjunction with python functions.

    • data_out_shape: Required for warp functions if the shape of the output array does not match that of the input array. An axis value of -1 indicate that the axis matches the input’s axis dimension.

    • seed: Optional argument that can be used with both python and warp functions. If set to None or <0, will use Replicator’s global seed together with the node identifier to produce a repeatable unique seed. When used with warp kernels, the seed is used to initialize a random number generator that produces a new integer seed value for each warp kernel call.

  • data_out_shape – Specifies the shape of the output array if the augmentation is specified as a warp kernel and the output array is a different shape than that of the input array. An axis value of -1 indicates that the axis is the same size of the corresponding axis in the input array.

  • documentation – Optionally document augmentation functionality, input parameters and output format.

  • kwargs – Optional parameters specifying the parameters to initialize the augmentation with

Example

>>> import omni.replicator.core as rep
>>> import warp as wp
>>> @wp.kernel
... def rgba_to_rgb(data_in: wp.array3d(dtype=wp.uint8), data_out: wp.array3d(dtype=wp.uint8)):
...    i, j = wp.tid()
...    data_out[i, j, 0] = data_in[i, j, 0]
...    data_out[i, j, 1] = data_in[i, j, 1]
...    data_out[i, j, 2] = data_in[i, j, 2]
>>> augmentation = rep.annotators.Augmentation.from_function(rgba_to_rgb, data_out_shape=(-1, -1, 3))
omni.replicator.core.annotators.augment(source_annotator: Union[Annotator, str], augmentation: Union[str, Augmentation], data_out_shape: Optional[Tuple] = None, name: Optional[str] = None, device: Optional[str] = None, **kwargs) Annotator

Create an augmented annotator

Parameters
  • source_annotator – Annotator to be augmented

  • augmentation – Augmentation to be applied to source annotator. Can be specified as an Augmentation, the name of a registered augmentation or the node type id of an omnigraph node to be used as an augmentation.

  • data_out_shape – Specifies the shape of the output array if the augmentation is specified as a warp kernel and the output array is a different shape than that of the input array. An axis value of -1 indicates that the axis is the same size of the corresponding axis in the input array.

  • name – Optional augmentation name. The augmentation name serves as the key in a writer payload dictionary. If set to None, the augmentation will take the name of the source annotator. Defaults to None

  • device – Optionally specify the target device. If the augmentation is a warp kernel, the device will automatically default to "cuda".

  • kwargs – Optional parameters specifying the parameters with which to initialize the augmentation.

Example

>>> import omni.replicator.core as rep
>>> @wp.kernel
... def rgba_to_rgb(data_in: wp.array3d(dtype=wp.uint8), data_out: wp.array3d(dtype=wp.uint8)):
...    i, j = wp.tid()
...    data_out[i, j, 0] = data_in[i, j, 0]
...    data_out[i, j, 1] = data_in[i, j, 1]
...    data_out[i, j, 2] = data_in[i, j, 2]
>>> rgb_anno = rep.annotators.augment(
...     source_annotator="rgb",
...     augmentation=rep.annotators.Augmentation.from_function(rgba_to_rgb)
... )
omni.replicator.core.annotators.augment_compose(source_annotator: Union[Annotator, str], augmentations: List[Union[Augmentation, str]], name: Optional[str] = None) Annotator

Compose an augmentated Annotator from multiple augmentation operations

Chain one or more augmentation operations together to be applied to a source annotator.

Parameters
  • source_annotator – Annotator to be augmented

  • augmentations – List of augmentations to be applied in sequence to the source annotator

  • name – Optional augmentation name. The augmentation name serves as the key in a writer payload dictionary. If set to None, the augmentation will take the name of the source annotator. Defaults to None

Example

>>> import omni.replicator.core as rep
>>> @wp.kernel
... def rgba_to_rgb(data_in: wp.array3d(dtype=wp.uint8), data_out: wp.array3d(dtype=wp.uint8)):
...    i, j = wp.tid()
...    data_out[i, j, 0] = data_in[i, j, 0]
...    data_out[i, j, 1] = data_in[i, j, 1]
...    data_out[i, j, 2] = data_in[i, j, 2]
>>> def rgb_to_greyscale(data_in):
...     r, g, b = data_in[..., 0], data_in[..., 1], data_in[..., 2]
...     return (0.299 * r + 0.587 * g + 0.114 * b).astype(np.uint8)
>>> greyscale_anno = rep.annotators.augment_compose(
...     source_annotator="rgb",
...     augmentations=[
...         rep.annotators.Augmentation.from_function(rgba_to_rgb),
...         rep.annotators.Augmentation.from_function(rgb_to_greyscale),
...     ]
... )

Default Augmentations

RgbaToRgb

Remove the alpha (last) channel from an RGBA image

Input Format - (height, width, 4): RGBA image

Output Format - (height, width, 3): RGB image

Example

import asyncio
import omni.replicator.core as rep

async def test_rgba_to_rgb():
    rp = rep.create.render_product(rep.create.camera(), (640, 480))

    augmented_anno = rep.annotators.get("LdrColor", device="cuda").augment("RgbaToRgb")
    augmented_anno.attach(rp)

    await rep.orchestrator.step_async()

    data = augmented_anno.get_data()
    print(data.shape)
    # (480, 640, 4)

asyncio.ensure_future(test_rgba_to_rgb())

AdjustSigmoid

Perform sigmoid correction on an image

A form of contrast adjustment, transforms each pixel (normalized to be between 0 and 1) of an image according to the equation Out=(1+egain(cutoffIn))1 1 2.

Initialization Parameters

  • cutoff (float): Shifts the characteristic sigmoid curve horizontally

  • gain (float): Multiplier in the exponent’s power of sigmoid function.

Input Format - (height, width, 4): RGBA image

Output Format - (height, width, 4): RGBA image

Example

import asyncio
import omni.replicator.core as rep

async def test_adjust_sigmoid():
    rp = rep.create.render_product(rep.create.camera(), (640, 480))

    augmented_anno = rep.annotators.get("LdrColor", device="cuda").augment("AdjustSigmoid", cutoff=0.2, gain=20.0)
    augmented_anno.attach(rp)

    await rep.orchestrator.step_async()

    data = augmented_anno.get_data()
    print(data.shape)
    # (480, 640, 4)

asyncio.ensure_future(test_adjust_sigmoid())

References

1

Gustav J. Braun, “Image Lightness Rescaling Using Sigmoidal Contrast Enhancement Functions”, http://markfairchild.org/PDFs/PAP07.pdf

2

Stéfan van der Walt, Johannes L. Schönberger, Juan Nunez-Iglesias, François Boulogne, Joshua D. Warner, Neil Yager, Emmanuelle Gouillart, Tony Yu and the scikit-image contributors. scikit-image: Image processing in Python. PeerJ 2:e453 (2014), https://doi.org/10.7717/peerj.453

Brightness

Modify the brightness of an image.

Initialization Parameters

  • brightness_factor (float): value between [-100, 100] that determines the brightness modification.

Input Format - (height, width, 4): RGBA image

Output Format - (height, width, 4): RGBA image

Example

import asyncio
import omni.replicator.core as rep

async def test_brightness():
    rp = rep.create.render_product(rep.create.camera(), (640, 480))

    augmented_anno = rep.annotators.get("LdrColor", device="cuda").augment("Brightness", brightness_factor=5.0)
    augmented_anno.attach(rp)

    await rep.orchestrator.step_async()

    data = augmented_anno.get_data()
    print(data.shape)
    # (480, 640, 4)

asyncio.ensure_future(test_brightness())

SpeckleNoise

Add speckle noise to an RGBA image

Provided a noise scaling factor sigma, add speckle noise to each pixel of the image.

Initialization Parameters

  • sigma (float): determines the amount of noise to add. A larger value produces a noisier image.

  • seed (int): Seed to use as initialization for the pseudo-random number generator. Seed is expected to be a non-negative integer.

Input Format - (height, width, 4): RGBA image

Output Format - (height, width, 4): RGBA image

Example

import asyncio
import omni.replicator.core as rep

async def test_speckle_noise():
    rp = rep.create.render_product(rep.create.camera(), (640, 480))

    augmented_anno = rep.annotators.get("LdrColor", device="cuda").augment("SpeckleNoise", sigma=0.2)
    augmented_anno.attach(rp)

    await rep.orchestrator.step_async()

    data = augmented_anno.get_data()
    print(data.shape)
    # (480, 640, 4)

asyncio.ensure_future(test_speckle_noise())

ShotNoise

Add shot noise to an RGBA image

Provided a noise scaling factor sigma, add shot noise to each pixel of the image.

Initialization Parameters

  • sigma (float): Determines the amount of noise to add. A larger value produces a noisier image.

  • seed (int): Seed to use as initialization for the pseudo-random number generator. Seed is expected to be a non-negative integer.

Input Format - (height, width, 4): RGBA image

Output Format - (height, width, 4): RGBA image

Example

import asyncio
import omni.replicator.core as rep

async def test_shot_noise():
    rp = rep.create.render_product(rep.create.camera(), (640, 480))

    augmented_anno = rep.annotators.get("LdrColor", device="cuda").augment("ShotNoise", sigma=0.2)
    augmented_anno.attach(rp)

    await rep.orchestrator.step_async()

    data = augmented_anno.get_data()
    print(data.shape)
    # (480, 640, 4)

asyncio.ensure_future(test_shot_noise())

RgbToHsv

Modifies an RGB image to HSV

Input Format - (height, width, 4): RGBA image

Output Format - (height, width, 4): RGBA image

Example

import asyncio
import omni.replicator.core as rep

async def test_rgb_to_hsv():
    rp = rep.create.render_product(rep.create.camera(), (640, 480))

    augmented_anno = rep.annotators.get("LdrColor", device="cuda").augment("HsvToRgb")
    augmented_anno.attach(rp)

    await rep.orchestrator.step_async()

    data = augmented_anno.get_data()
    print(data.shape)
    # (480, 640, 4)

asyncio.ensure_future(test_rgb_to_hsv())

HsvToRgb

Modifies an HSV image to RGB

Input Format - (height, width, 4): RGBA image

Output Format - (height, width, 4): RGBA image

Example

import asyncio
import omni.replicator.core as rep

async def test_hsv_to_rgb():
    rp = rep.create.render_product(rep.create.camera(), (640, 480))

    augmented_anno = rep.annotators.get("LdrColor", device="cuda").augment_compose(["RgbToHsv", "HsvToRgb"])
    augmented_anno.attach(rp)

    await rep.orchestrator.step_async()

    data = augmented_anno.get_data()
    print(data.shape)
    # (480, 640, 4)

asyncio.ensure_future(test_hsv_to_rgb())

GlassBlur

Applies a Glass Blur augmentation to an RGBA image.

To simulate glass blur, each pixel is swapped with another sampled from within a window whose size is determined by the delta parameter.

Initialization Parameters

  • delta (int): determines the maximum window size from which to sample a pixel. A larger value produces a blurrier effect.

  • seed (int): Seed to use as initialization for the pseudo-random number generator. Seed is expected to be a non-negative integer.

Input Format - (height, width, 4): RGBA image

Output Format - (height, width, 4): RGBA image

Example

import asyncio
import omni.replicator.core as rep

async def test_glass_blur():
    rp = rep.create.render_product(rep.create.camera(), (640, 480))
    augmented_anno = rep.annotators.get("LdrColor", device="cuda").augment("GlassBlur", delta=5)
    augmented_anno.attach(rp)

    await rep.orchestrator.step_async()

    data = augmented_anno.get_data()
    print(data.shape)
    # (480, 640, 4)

asyncio.ensure_future(test_glass_blur())

BackgroundRand

Randomize and apply a background image.

Given a folder path, valid images are randomly selected and applied as the background to the current image.

Initialization Parameters

  • folderpath (str): Path to directory containing images to be used as backgrounds.

  • seed (int): Seed to use as initialization for the pseudo-random number generator for the sampler controlling image selection. Seed is expected to be a non-negative integer.

Input Format - (height, width, 4): RGBA image

Output Format - (height, width, 4): RGBA image

Example

import asyncio
import omni.replicator.core as rep

async def test_background_rand():
    rp = rep.create.render_product(rep.create.camera(), (640, 480))
    augmented_anno = rep.annotators.get("LdrColor", device="cuda").augment("BackgroundRand", folderpath=rep.example.TEXTURES_DIR)
    augmented_anno.attach(rp)

    await rep.orchestrator.step_async()

    data = augmented_anno.get_data()
    print(data["data"].shape)
    # (480, 640, 4)
    print(data["info"])
    # {'xform': array([1., 0., 0., 0., 1., 0., 0., 0., 1.])}

asyncio.ensure_future(test_background_rand())

Contrast

Adjust the contrast of an image.

Initialization Parameters

  • contrastFactor (float): Positive float value specifying how much to adjust the contrast. A value of 0.0 produces a solid grey image, 1.0 results in the original input image and 2.0 increases the contrast by a factor of 2.0.

Input Format - (height, width, 4): RGBA image

Output Format - (height, width, 4): RGBA image

Example

import asyncio
import omni.replicator.core as rep

async def test_adjust_contrast():
    rp = rep.create.render_product(rep.create.camera(), (640, 480))
    augmented_anno = rep.annotators.get("LdrColor", device="cuda").augment("Contrast", contrastFactor=1.5)
    augmented_anno.attach(rp)

    await rep.orchestrator.step_async()

    data = augmented_anno.get_data()
    print(data["data"].shape)
    # (480, 640, 4)
    print(data["info"])
    # {'xform': array([1., 0., 0., 0., 1., 0., 0., 0., 1.])}

asyncio.ensure_future(test_adjust_contrast())

Conv2d

Apply a 2D convolution to an image

Initialization Parameters

  • kernel (float[]): The kernel to convolve with an image. Kernel is provided as a flattened array of size

    [N * N] where N is the kernel size.

Input Format - (height, width, 4): RGBA image

Output Format - (height, width, 4): RGBA image

Example

import asyncio
import numpy as np
import omni.replicator.core as rep

async def test_conv2d():
    rp = rep.create.render_product(rep.create.camera(), (640, 480))

    # Create a gaussian blur kernel
    gaussian_blur = np.array([
        [0.0625, 0.1250, 0.0625],
        [0.1250, 0.2500, 0.1250],
        [0.0625, 0.1250, 0.0625],
    ])

    augmented_anno = rep.annotators.get("LdrColor", device="cuda").augment("Conv2d", kernel=gaussian_blur)
    augmented_anno.attach(rp)

    await rep.orchestrator.step_async()

    data = augmented_anno.get_data()
    print(data["data"].shape)
    # (480, 640, 4)
    print(data["info"])
    # {'xform': array([1., 0., 0., 0., 1., 0., 0., 0., 1.])}

asyncio.ensure_future(test_conv2d())

CropResize

Crop, resize and translate an image.

Initialization Parameters

  • cropFactor (float): Value between >0.0 and 1.0 specifying the amount of the image to crop. A value of 1.0 indicates no crop and a value of 0.5 will crop the image by half.

  • offsetFactor (float[2]): Value between (-1.0 and 1.0) indicating the translation offset factor in (vertical, horizontal) directions. A value of (-1.0, -1.0) will translate the cropped image to the bottom-most and left-most, and a value of (1.0, 1.0) to the top-most and right-most. Note that if cropFactor is set to 1.0, no translation is possible.

  • seed (int): Seed to use as initialization for the pseudo-random number generator for the sampler controlling image selection. Seed is expected to be a non-negative integer.

Input Format - (height, width, 4): RGBA image

Output Format - (height, width, 4): RGBA image

Example

import asyncio
import omni.replicator.core as rep

async def test_crop_resize():
    rp = rep.create.render_product(rep.create.camera(), (640, 480))
    augmented_anno = rep.annotators.get("LdrColor", device="cuda").augment("CropResize", cropFactor=0.5, offset_factor=(-0.2, 0.2))
    augmented_anno.attach(rp)

    await rep.orchestrator.step_async()

    data = augmented_anno.get_data()
    print(data["data"].shape)
    # (480, 640, 4)
    print(data["info"])
    # {'xform': array([   2.,    0.,  320.,    0.,    2., -720.,    0.,    0.,    1.])}

asyncio.ensure_future(test_crop_resize())

CutMix

Randomly apply a rectangular patch from another image onto the input image.

The augmentation takes in a random rectangular patch from another image and superimposes it on the input image. The rectangular patch is encoded in a binary mask where the pixels belonging to the rectangle have a mask value of 1 and 0 otherwise.

Initialization Parameters

  • folderpath (str): Path to directory containing images to be used as patches.

  • seed (int): Seed to use as initialization for the pseudo-random number generator for the sampler controlling image selection. Seed is expected to be a non-negative integer.

Input Format - (height, width, 4): RGBA image

Output Format - (height, width, 4): RGBA image

Example

import asyncio
import omni.replicator.core as rep

async def test_cut_mix():
    rp = rep.create.render_product(rep.create.camera(), (640, 480))
    augmented_anno = rep.annotators.get("LdrColor", device="cuda").augment("CutMix", folderpath=rep.example.TEXTURES_DIR)
    augmented_anno.attach(rp)

    await rep.orchestrator.step_async()

    data = augmented_anno.get_data()
    print(data["data"].shape)
    # (480, 640, 4)
    print(data["info"])
    # {'xform': array([1., 0., 0., 0., 1., 0., 0., 0., 1.])}

asyncio.ensure_future(test_cut_mix())

ImageBlend

Blend an input image with a sampled blend image.

Initialization Parameters

  • blendFactor (float): Blend amount. A value of 0.0 will return the original image and a value of 1.0 will return the blend image.

  • folderpath (str): Path to directory containing images to be used as patches.

  • seed (int): Seed to use as initialization for the pseudo-random number generator for the sampler controlling image selection. Seed is expected to be a non-negative integer.

Input Format - (height, width, 4): RGBA image

Output Format - (height, width, 4): RGBA image

Example

import asyncio
import omni.replicator.core as rep

async def test_image_blend():
    rp = rep.create.render_product(rep.create.camera(), (640, 480))
    augmented_anno = rep.annotators.get("LdrColor", device="cuda").augment("ImageBlend", blendFactor=0.2, folderpath=rep.example.TEXTURES_DIR)
    augmented_anno.attach(rp)

    await rep.orchestrator.step_async()

    data = augmented_anno.get_data()
    print(data["data"].shape)
    # (480, 640, 4)
    print(data["info"])
    # {'xform': array([1., 0., 0., 0., 1., 0., 0., 0., 1.])}

asyncio.ensure_future(test_image_blend())

MotionBlur

Apply a motion blur effect to an input image.

Initialization Parameters

  • motionAngle (float): Angle in degrees where 0 indicates motion towards the left, 90 towards the bottom, and 270 towards the top.

  • strength (float): Motion Blur strength from -1 to 1.

  • kernelSize (int): Size of the conv kernel which controls the size of blur that will be produced.

Input Format - (height, width, 4): RGBA image

Output Format - (height, width, 4): RGBA image

Example

import asyncio
import omni.replicator.core as rep

async def test_motion_blur():
    rp = rep.create.render_product(rep.create.camera(), (640, 480))
    augmented_anno = rep.annotators.get("LdrColor", device="cuda").augment("MotionBlur", motionAngle=45.0, strength=0.8, kernelSize=25)
    augmented_anno.attach(rp)

    await rep.orchestrator.step_async()

    data = augmented_anno.get_data()
    print(data["data"].shape)
    # (480, 640, 4)
    print(data["info"])
    # {'xform': array([1., 0., 0., 0., 1., 0., 0., 0., 1.])}

asyncio.ensure_future(test_motion_blur())

Pixellate

Pixellate an input image.

Initialization Parameters

  • kernelSize (int): Size of the conv kernel which controls how many original pixels get consolidated into a single larger pixel.

Input Format - (height, width, 4): RGBA image

Output Format - (height, width, 4): RGBA image

Example

import asyncio
import omni.replicator.core as rep

async def test_pixellate():
    rp = rep.create.render_product(rep.create.camera(), (640, 480))
    augmented_anno = rep.annotators.get("LdrColor", device="cuda").augment("Pixellate", kernelSize=25)
    augmented_anno.attach(rp)

    await rep.orchestrator.step_async()

    data = augmented_anno.get_data()
    print(data["data"].shape)
    # (480, 640, 4)
    print(data["info"])
    # {'xform': array([1., 0., 0., 0., 1., 0., 0., 0., 1.])}

asyncio.ensure_future(test_pixellate())

Rotate

Rotate an input image.

Initialization Parameters

  • rotation (float): Clockwise image rotation in degrees. A value of 0.0 corresponds to no rotation.

Input Format - (height, width, 4): RGBA image

Output Format - (height, width, 4): RGBA image

Example

import asyncio
import omni.replicator.core as rep


async def test_rotate():
    camera = rep.create.camera()
    rp = rep.create.render_product(camera, (640, 480))
    augmented_anno = rep.annotators.get("LdrColor", device="cuda").augment("Rotate", rotation=90)
    augmented_anno.attach(rp)

    await rep.orchestrator.step_async()

    data = augmented_anno.get_data()
    print(data["data"].shape)
    # (480, 640, 4)
    print(data["info"])
    # {'xform': array([ 0.0,  1.0,  80.0, -1.0, 0.0,  559.0,  0.0,  0.0, 1.0])}

    # Test bounding box transform based on rotation xform
    # Add a labelled sphere
    with rep.create.sphere(semantics=[("class", "sphere")]):
        rep.modify.pose_camera_relative(camera=camera, render_product=rp, distance=700, horizontal_location=0.2, vertical_location=0.4)

    # Add a labelled cone
    with rep.create.cone(semantics=[("class", "cone")]):
        rep.modify.pose_camera_relative(camera=camera, render_product=rp, distance=500, horizontal_location=-0.2, vertical_location=0.1)

    # Add bounding box annotator
    bbox_2d = rep.annotators.get("bounding_box_2d_tight_fast")
    bbox_2d.attach(rp)

    await rep.orchestrator.step_async()

    data = augmented_anno.get_data()
    xform = data["info"]["xform"]
    bbox_data = bbox_2d.get_data()["data"]

    visualization = rep.tools.colorize_bbox_2d(data["data"].numpy(), bbox_data, xform, draw_rotated_boxes=True)
    from PIL import Image
    Image.fromarray(visualization).save("rotated_bbox.png")

asyncio.ensure_future(test_rotate())

Writers

Writers are how to get data from Omniverse Replicator out to disk.

Writer Base class

class omni.replicator.core.writers.Writer

Base Writer class.

Writers must specify a list of required annotators which will be called during data collection. Annotator data is packaged in a data dictionary of the form <annotator_name>: <annotator_data> and passed to the writer’s write function.

__init__() and write() must be implemented by custom writers that inherit from this class.

An optional on_final_frame() function can be defined to run once data generation is stopped.

backend

Optionally specify a rep.backends.Backend object. The backend specified here is used to automatically write metadata data.

version

Writer version number.

annotators

Required list of annotators to attach to writer.

num_written

Integer that is incremented with every call to write()

data_structure

Specifies the writer’s output data structure. Valid values: ["legacy", "annotator", "renderProduct] - annotator: {“annotators”: <anno>: {<render_product>: {<annotator_data>}}} - renderProduct: {“renderProducts”: <render_product>: {<anno>: {<annotator_data>}}} - legacy (multi renderProduct): {<render_product>_<anno>: {<annotator_data>}} - legacy (single renderProduct): {<anno>: {<annotator_data>}}

Default Writers

BasicWriter

class omni.replicator.core.writers_default.BasicWriter(output_dir: Optional[str] = None, s3_bucket: Optional[str] = None, s3_region: Optional[str] = None, s3_endpoint: Optional[str] = None, semantic_types: Optional[List[str]] = None, rgb: bool = False, bounding_box_2d_tight: bool = False, bounding_box_2d_loose: bool = False, semantic_segmentation: bool = False, instance_id_segmentation: bool = False, instance_segmentation: bool = False, distance_to_camera: bool = False, distance_to_image_plane: bool = False, bounding_box_3d: bool = False, occlusion: bool = False, normals: bool = False, motion_vectors: bool = False, camera_params: bool = False, pointcloud: bool = False, pointcloud_include_unlabelled: bool = False, image_output_format: str = 'png', colorize_semantic_segmentation: bool = True, colorize_instance_id_segmentation: bool = True, colorize_instance_segmentation: bool = True, colorize_depth: bool = False, skeleton_data: bool = False, frame_padding: int = 4, semantic_filter_predicate: Optional[str] = None, use_common_output_dir: bool = False, backend: Optional[BaseBackend] = None)

Basic writer capable of writing built-in annotator groundtruth.

Parameters
  • output_dir – Output directory string that indicates the directory to save the results.

  • s3_bucket – The S3 Bucket name to write to. If not provided, disk backend will be used instead. Default: None. This backend requires that AWS credentials are set up in ~/.aws/credentials. See https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html#configuration

  • s3_region – If provided, this is the region the S3 bucket will be set to. Default: us-east-1

  • s3_endpoint – If provided, this endpoint URL will be used instead of the default.

  • semantic_types – List of semantic types to consider when filtering annotator data. Default: ["class"]

  • rgb – Boolean value that indicates whether the rgb/LdrColor annotator will be activated and the data will be written or not. Default: False.

  • bounding_box_2d_tight – Boolean value that indicates whether the bounding_box_2d_tight annotator will be activated and the data will be written or not. Default: False.

  • bounding_box_2d_loose – Boolean value that indicates whether the bounding_box_2d_loose annotator will be activated and the data will be written or not. Default: False.

  • semantic_segmentation – Boolean value that indicates whether the semantic_segmentation annotator will be activated and the data will be written or not. Default: False.

  • instance_id_segmentation – Boolean value that indicates whether the instance_id_segmentation annotator will be activated and the data will be written or not. Default: False.

  • instance_segmentation – Boolean value that indicates whether the instance_segmentation annotator will be activated and the data will be written or not. Default: False.

  • distance_to_camera – Boolean value that indicates whether the distance_to_camera annotator will be activated and the data will be written or not. Default: False.

  • distance_to_image_plane – Boolean value that indicates whether the distance_to_image_plane annotator will be activated and the data will be written or not. Default: False.

  • bounding_box_3d – Boolean value that indicates whether the bounding_box_3d annotator will be activated and the data will be written or not. Default: False.

  • occlusion – Boolean value that indicates whether the occlusion annotator will be activated and the data will be written or not. Default: False.

  • normals – Boolean value that indicates whether the normals annotator will be activated and the data will be written or not. Default: False.

  • motion_vectors – Boolean value that indicates whether the motion_vectors annotator will be activated and the data will be written or not. Default: False.

  • camera_params – Boolean value that indicates whether the camera_params annotator will be activated and the data will be written or not. Default: False.

  • pointcloud – Boolean value that indicates whether the pointcloud annotator will be activated and the data will be written or not. Default: False.

  • pointcloud_include_unlabelled – If True, pointcloud annotator will capture any prim in the camera’s perspective, not matter if it has semantics or not. If False, only prims with semantics will be captured. Defaults to False.

  • image_output_format – String that indicates the format of saved RGB images. Default: "png"

  • colorize_semantic_segmentation – If True, semantic segmentation is converted to an image where semantic IDs are mapped to colors and saved as a uint8 4 channel PNG image. If False, the output is saved as a uint32 PNG image. Defaults to True.

  • colorize_instance_id_segmentation – If True, instance id segmentation is converted to an image where instance IDs are mapped to colors. and saved as a uint8 4 channel PNG image. If False, the output is saved as a uint32 PNG image. Defaults to True.

  • colorize_instance_segmentation – If True, instance segmentation is converted to an image where instance are mapped to colors. and saved as a uint8 4 channel PNG image. If False, the output is saved as a uint32 PNG image. Defaults to True.

  • colorize_depth – If True, will output an additional PNG image for depth for visualization Defaults to False.

  • frame_padding – Pad the frame number with leading zeroes. Default: 4

  • semantic_filter_predicate

    A string specifying a semantic filter predicate as a disjunctive normal form of semantic type, labels.

    Examples :

    ”typeA : labelA & !labelB | labelC , typeB: labelA ; typeC: labelD” “typeA : * ; * : labelA”

  • use_common_output_dir – If True, output for each annotator coming from multiple render products are saved under a common directory with the render product as the filename prefix (eg. <render_product_name>_<annotator_name>_<sequence>.<format>). If False, multiple render product outputs are placed into their own directory (eg. <render_product_name>/<annotator_name>_<sequence>.<format>). Setting is ignored if using the writer with a single render product. Defaults to False.

  • backend – Optionally pass a backend to use. If specified, output_dir and s3_<> arguments may be omitted. If both are provided, the backends will be grouped.

Example

>>> import omni.replicator.core as rep
>>> import carb
>>> camera = rep.create.camera()
>>> render_product = rep.create.render_product(camera, (1024, 1024))
>>> writer = rep.WriterRegistry.get("BasicWriter")
>>> tmp_dir = carb.tokens.get_tokens_interface().resolve("${temp}/rgb")
>>> writer.initialize(output_dir=tmp_dir, rgb=True)
>>> writer.attach([render_product])
>>> rep.orchestrator.run()

FPSWriter

class omni.replicator.core.writers_default.FPSWriter

Record Writer FPS

Writer that can be attached to record and print out writer FPS. Typically attached together with another writer.

Note

Writer does not write any data.

KittiWriter

class omni.replicator.core.writers_default.KittiWriter(output_dir: str, s3_bucket: Optional[str] = None, s3_region: Optional[str] = None, s3_endpoint: Optional[str] = None, semantic_types: Optional[List[str]] = None, omit_semantic_type: bool = False, bbox_height_threshold: int = 25, partly_occluded_threshold: float = 0.5, fully_visible_threshold: float = 0.95, renderproduct_idxs: Optional[List[tuple]] = None, mapping_path: Optional[str] = None, mapping_dict: Optional[dict] = None, colorize_instance_segmentation: bool = False, semantic_filter_predicate: Optional[str] = None, use_kitti_dir_names: bool = False)

Writer outputting data in the KITTI annotation format: http://www.cvlibs.net/datasets/kitti/

Note

Development work to provide full-support is ongoing.

Supported Annotations: - RGB - Object Detection (partial 2D support, see notes) - Depth - Semantic Segmentation - Instance Segmentation

Parameters
  • output_dir – Output directory to which KITTI annotations will be saved.

  • semantic_types – List of semantic types to consider. If None, only consider semantic types "class".

  • omit_semantic_type – If True, only record the semantic data (ie. class: car becomes car).

  • bbox_height_threshold – The minimum valid bounding box height, in pixels. Value must be positive integers.

  • partly_occluded_threshold – Minimum occlusion factor for bounding boxes to be considered partly occluded.

  • fully_visible_threshold – Minimum occlusion factor for bounding boxes to be considered fully visible.

  • mapping_path – File path to JSON to use as the label to color mapping for KITTI. ex: {'car':(155, 255, 74, 255)} If no mapping_path is supplied, the default semantics specified in the KITTI spec will be used. Note that semantics not specified in the mapping will be labelled as “unlabelled”. The mapping may include both “unlabelled” and “background” labels to specify how each is colored when colorize_instance_segmentation is True

  • mapping_dict – Dictionary of labels and their colors in (R,G,B,A). ex: {"my_semantic": (12, 07, 83, 255)} mapping_dict and mapping_path cannot both be specified.

  • colorize_instance_segmentation – If True, save an additional colorized instance segmentation image to the instance_rgb directory

  • use_kitti_dir_names – If True, use standard KITTI directory names: rgb -> image_02, semantic_segmentation -> semantic, instance_segmentation -> instance, object_detection -> label_02

Note

  • Object Detection

  • Bounding boxes with a height smaller than 25 pixels are discarded

  • Supported: bounding box extents, semantic labels

  • Partial Support: occluded (occlusion is estimated from the area ratio of tight / loose bounding boxes)

  • Unsupported: alpha, dimensions, location, rotation_y, truncated (all set to default values of 0.0)

COCOWriter

class omni.replicator.core.writers_default.CocoWriter(output_dir: str, semantic_types: Optional[List[str]] = None, coco_categories: Optional[dict] = None, s3_bucket: Optional[str] = None, s3_region: Optional[str] = None, s3_endpoint: Optional[str] = None, dataset_id: Optional[str] = None, frame_padding: int = 4, image_output_format: str = 'png', coco_license_info: Optional[List[dict]] = None, **kwargs)

Writer outputting data in the Coco annotation format: https://cocodataset.org/#format-data

Note

Development work to provide full-support is ongoing.

  • Supported: Object Detection, Stuff Segmentation, Panoptic Segmentation

  • Unsupported: Keypoints, Image Captioning, DensePose

https://github.com/cocodataset/panopticapi

Supported Annotations:
  • RGB

  • Object Detection

  • Semantic Segmentation

Parameters
  • output_dir – Output directory to which Coco annotations will be saved.

  • semantic_types – List of semantic types to consider. If None, only consider semantic types ['class', 'coco', 'stuff', 'thing'].

  • coco_categories – Dictionary of COCO compatible labels. Required keys: name, id. If None, will use the built-in COCO labels from https://cocodataset.org ex: {"semantic_name": 'name': 'semantic_name', 'id': 1234, 'supercategory': 'super_name', 'color': (03, 23, 15), 'isthing': 1}

  • s3_bucket – The S3 Bucket name to write to. If not provided, disk backend will be used instead. Default: None. This backend requires that AWS credentials are set up in ~/.aws/credentials. See https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html#configuration

  • s3_region – If provided, this is the region the S3 bucket will be set to. Default: us-east-1

  • s3_endpoint – If provided, this endpoint URL will be used instead of the default.

  • dataset_id – An identifier to be added to the output file names. If None, will use a random string

  • image_output_format – Image filetype to write to disk, default is PNG

  • coco_license_info – Dictionary of license information to add. [{"id": int, "name": str, "url": str,},]. See: https://cocodataset.org/#format-data

Writer Utils

omni.replicator.core.writers_default.tools.data_to_colour(data)
omni.replicator.core.writers_default.tools.colorize_distance(distance_data: Union[array, ndarray], near: float = 1e-05, far: float = 100.0)

Convert distance in meters to grayscale image.

Parameters
  • distance_data (wp.array, numpy.array) – data returned by the annotator.

  • near (float) – near value to clip the distance_data. Set value to None to autofit data to min()

  • far (float) – far value to clip the distance_data. Set value to None to autofit data to max() (disregarding np.inf)

Returns

Data converted to uint8 from (0, 255)

Return type

(ndarray)

omni.replicator.core.writers_default.tools.binary_mask_to_rle(binary_mask)

Convert a Binary Mask to RLE format neeeded by Pycocotools: Args: binary_mask - numpy.array of 0’s and 1’s representing current segmentation returns - data in RLE format to be used by pycocotools.

omni.replicator.core.writers_default.tools.colorize_segmentation(data, labels, mapping=None)

Convert segmentation data into colored image.

Parameters
  • data (numpy.array) – data returned by the annotator.

  • dict (labels) – label data mapping semantic IDs to semantic labels - {“0”: {“class”:”cube”}, “1”: {“class”, “sphere”}}

  • mapping (dict) – mapping from ids to labels used for retrieving color {(255, 0, 0): {“class”:”cube”}, (0, 255, 0)}: {“class”:”sphere”}}

Returns

Data coverted to uint8 RGBA image and remapped labels

Return type

Tuple[np.array, dict]

omni.replicator.core.writers_default.tools.colorize_motion_vector(data)

Convert motion vector into colored image. The conversion is done by mapping 3D direction vector to HLS space, then converted to RGB.

Parameters

data (numpy.array) – data returned by the annotator of shape (H, W, 4).

Returns

Data converted to uint8 RGBA image.

Return type

(ndarray)

omni.replicator.core.writers_default.tools.colorize_bbox_2d(image: ndarray, data: ndarray, xform: Optional[ndarray] = None, draw_rotated_boxes: bool = False) ndarray

Colorizes 2D bounding box data for visualization.

Parameters
  • image – RGBA Image that bounding boxes are drawn onto.

  • data – 2D bounding box data from the annotator.

  • xform – Optional 3x3 transform matrix to apply to the points. The Xform expects height, width ordering.

  • draw_rotated_boxes – If True, draw bounding boxes with orientation using four corners when transformed using xform. Ignored if xform is None. Defaults to False.

Returns

Data converted to uint8 RGB image, which the outline of the bounding box is colored.

Return type

(ndarray)

omni.replicator.core.writers_default.tools.colorize_normals(data)

Convert normals data into colored image.

Parameters

data (ndarray) – data returned by the annotator.

Returns

Data converted to uint8 RGB image.

Return type

(ndarray)

omni.replicator.core.writers_default.tools.random_colours(N, enable_random=True, num_channels=4)

Generate random colors. Generate visually distinct colours by linearly spacing the hue channel in HSV space and then convert to RGB space.

Triggers

omni.replicator.core.trigger.on_frame(interval: int = 1, num_frames: int = 0, name: str = 'on_frame', rt_subframes: int = 1, max_execs: int = 0) ReplicatorItem

Execute on a specific generation frame.

Parameters
  • interval – The generation frame interval to execute on.

  • num_frames – (Will be deprecated) Replaced by max_execs. The number of times to activate the trigger. Generation automatically stops when all triggers have reached their maximum activation number. Note that this determines the number of times that the trigger is activated and not the number of times data is written.

  • name – The name of the trigger.

  • rt_subframes – If rendering in RTX Realtime mode, specifies the number of subframes to render in order to reduce artifacts caused by large changes in the scene.

  • max_execs – The number of times to activate the trigger. Generation automatically stops when all triggers have reached their maximum activation number.

Example

>>> import omni.replicator.core as rep
>>> spheres = rep.create.sphere(count=10, scale=rep.distribution.uniform(1., 3.))
>>> with rep.trigger.on_frame(max_execs=10):
...    with spheres:
...        mod = rep.modify.pose(position=rep.distribution.uniform((-500., -500., -500.), (500., 500., 500.)))
omni.replicator.core.trigger.on_key_press(key: str, modifier: str = None, name: str = None) ReplicatorItem

Execute when a keyboard key is input.

Parameters
  • key – The key to listen for.

  • modifier – Optionally add a modifier [shift, alt, ctrl]

  • name – The name of the trigger.

Example

>>> import omni.replicator.core as rep
>>> spheres = rep.create.sphere(count=10, scale=rep.distribution.uniform(1., 3.))
>>> with rep.trigger.on_key_press(key="P", modifier="shift"):
...    with spheres:
...        mod = rep.modify.pose(position=rep.distribution.uniform((-500., -500., -500.), (500., 500., 500.)))
omni.replicator.core.trigger.on_time(interval: float = 1, num: int = 0, name: str = 'on_time', rt_subframes: int = 32, enable_capture_on_play: bool = True, reset_physics: bool = True, max_execs: int = 0) ReplicatorItem

Execute on a specific time interval.

Parameters
  • interval – The interval of elapsed time to execute on.

  • num – (Will be deprecated) Replaced by max_execs. The number of times to activate the trigger. Generation automatically stops when all triggers have reached their maximum activation number. Note that this determines the number of times that the trigger is activated and not the number of times data is written.

  • name – The name of the trigger.

  • rt_subframes – If rendering in RTX Realtime mode, specifies the number of subframes to render in order to reduce artifacts caused by large changes in the scene.

  • enable_capture_on_play – Enable CaptureOnPlay which ties replicator capture with the timeline state. Defaults to True.

  • reset_physics – If True physics simulation is reset on each trigger activation. Defaults to True.

  • max_execs – The number of times to activate the trigger. Generation automatically stops when all triggers have reached their maximum activation number. Note that this determines the number of times that the trigger is activated and not the number of times data is written.

Example

>>> import omni.replicator.core as rep
>>> spheres = rep.create.sphere(count=10, scale=rep.distribution.uniform(1., 3.))
>>> with rep.trigger.on_time(max_execs=10):
...    with spheres:
...        mod = rep.modify.pose(position=rep.distribution.uniform((-500., -500., -500.), (500., 500., 500.)))
omni.replicator.core.trigger.on_custom_event(event_name: str) ReplicatorItem

Execute when a specified event is received.

Parameters

event_name – The name of the event to listen for.

Example

>>> import omni.replicator.core as rep
>>> spheres = rep.create.sphere(count=10, scale=rep.distribution.uniform(1., 3.))
>>> with rep.trigger.on_custom_event(event_name="Randomize!"):
...    with spheres:
...        mod = rep.modify.pose(position=rep.distribution.uniform((-500., -500., -500.), (500., 500., 500.)))
>>> # Send event
>>> rep.utils.send_og_event("Randomize!")
omni.replicator.core.trigger.on_condition(condition: Union[partial, Callable], max_execs: int = 0, rt_subframes: int = 1) ReplicatorItem

Execute when a specified condition is met.

Create a OnCondition trigger which activates when condition returns True.

Parameters
  • condition – The function or partial defining the condition to be met. Must return a bool. Function parameters are automatically added to the node as inputs. If default parameters are provided, these default values will be used.

  • max_execs – The number of times to activate the trigger. Generation automatically stops when all triggers have reached their maximum activation number.

  • rt_subframes – If rendering in RTX Realtime mode, specifies the number of subframes to render in order to reduce artifacts caused by large changes in the scene. Default is 1.

Example

>>> import omni.usd
>>> import omni.replicator.core as rep
>>> from functools import partial
>>> # Create a condition that returns ``True`` whenever a prim reaches the specified threshold
>>> def has_reached_ground(prim_paths, threshold=0.):
...     import omni.usd
...     from pxr import UsdGeom
...     stage = omni.usd.get_context().get_stage()
...     up_axis = UsdGeom.GetStageUpAxis(stage)
...     op = "xformOp:translate"
...     idx = 1 if up_axis == "Y" else 2
...     for prim_path in prim_paths:
...         prim = stage.GetPrimAtPath(str(prim_path))
...         if prim.HasAttribute(op) and prim.GetAttribute(op).Get()[idx] <= threshold:
...             return True
...     return False
>>> spheres = rep.create.sphere(count=10, scale=rep.distribution.uniform(1., 3.))
>>> # Reposition the spheres when condition is met
>>> with rep.trigger.on_condition(condition=partial(has_reached_ground, prim_paths=spheres.get_output("prims"))):
...    with spheres:
...        mod = rep.modify.pose(position=rep.distribution.uniform((-500., 200., 200.), (500., 500., 500.)))
...        phys = rep.physics.rigid_body()
omni.replicator.core.trigger.register(fn: Callable[[...], Union[ReplicatorItem, Node]], override: bool = True, fn_name: Optional[str] = None) None

Register a new function under omni.replicator.core.trigger. Extend the default capabilities of omni.replicator.core.trigger by registering new functionality. New functions must return a ReplicatorItem or an OmniGraph node.

Parameters
  • fn – A function that returns a ReplicatorItem or an OmniGraph node.

  • override – If True, will override existing functions of the same name. If False, an error is raised.

  • fn_name – Optional, specify the registration name. If not specified, the function name is used. fn_name must only contains alphanumeric letters (a-z), numbers (0-9), or underscores (_), and cannot start with a number or contain any spaces.

Orchestrator

Simulation Control

omni.replicator.core.orchestrator.pause() None

Pause a running replicator scenario

Submit the Pause command to replicator without waiting for its status to change to Paused.

omni.replicator.core.orchestrator.preview() None

Run the replicator scenario for a single iteration

Submit the Preview command to replicator without waiting for a frame to be previewed. Writers are disabled during preview.

omni.replicator.core.orchestrator.resume() None

Resume a paused replicator scenario

Submit the Resume command to replicator without waiting for its status to change to Started.

omni.replicator.core.orchestrator.run(num_frames: Optional[int] = None, start_timeline: bool = False) None

Run the replicator scenario

Submit the Start command to replicator without waiting for its status to change to Started.

Parameters
  • num_frames – Optionally specify the maximum number of frames to capture. Note that num_frames does not override the number of frames specified in triggers defined in the scene.

  • start_timeline – Optionally start the timeline when Replicator starts.

omni.replicator.core.orchestrator.run_until_complete(num_frames: Optional[int] = None, start_timeline: bool = False) None

Run the replicator scenario until stopped (standalone workflow)

Synchronous function: only use from standalone workflow (controlling Kit app from python). Generation ends when all triggers have reached their end condition or when a stop event is published.

Parameters

num_frames – Optionally specify the maximum number of frames to capture. Note that num_frames does not override the number of frames specified in triggers defined in the scene.

omni.replicator.core.orchestrator.step(rt_subframes: int = -1, pause_timeline: bool = True, delta_time: Optional[float] = None) None

Step one frame (standalone workflow)

Synchronous step function: only use from standalone workflow (controlling Kit app from python). If Replicator is not yet started, an initialization step is first taken to ensure the necessary settings are set for data capture. The renderer will then render as many subframes as required by current settings and schedule a frame to be captured by any active annotators and writers.

Parameters
  • rt_subframes – Specify the number of subframes to render. During subframe generation, the simulation is paused. This is often beneficial when large scene changes occur to reduce rendering artifacts or to allow materials to fully load. This setting is enabled for both RTX Real-Time and Path Tracing render modes. Values must be greater than 0.

  • pause_timeline – If True, pause timeline after step. Defaults to True.

  • delta_time – The amount of time that timeline advances for each step call. When delta_time == None, default timeline rate will be used. When delta_time == 0.0, timeline will not advance. When delta_time > 0.0, timeline will advance by the custom delta_time.

omni.replicator.core.orchestrator.stop() None

Stop the replicator scenario

Submit the Stop command to replicator without waiting for its status to change to Stopped.

omni.replicator.core.orchestrator.wait_until_complete() None

Wait until generation is complete (standalone workflow)

Synchronous function: only use from standalone workflow (controlling Kit app from python). Blocks execution until synthetic data generation has completed.

Simulation Control (async)

async omni.replicator.core.orchestrator.preview_async() None

Run the replicator scenario for a single iteration

Submit the Preview command to replicator and wait for a frame to be previewed. Writers are disabled during preview.

async omni.replicator.core.orchestrator.run_async(num_frames: Optional[int] = None, start_timeline: bool = False) None

Run the replicator scenario and wait for orchestrator to start

Submit the Start command to replicator and wait for its status to change to Started.

Parameters
  • num_frames – Optionally specify the maximum number of frames to capture. Note that num_frames does not override the number of frames specified in triggers defined in the scene.

  • start_timeline – Optionally start the timeline when Replicator starts.

async omni.replicator.core.orchestrator.run_until_complete_async(num_frames: Optional[int] = None, start_timeline: bool = False) None

Run the replicator scenario until stopped Generation ends when all triggers have reached their end condition or when a stop event is published.

Parameters
  • num_frames – Optionally specify the maximum number of frames to capture. Note that num_frames does not override the number of frames specified in triggers defined in the scene.

  • start_timeline – Optionally start the timeline when Replicator starts.

async omni.replicator.core.orchestrator.step_async(rt_subframes: int = -1, pause_timeline: bool = True, delta_time: Optional[float] = None) None

Step one frame

If Replicator is not yet started, an initialization step is first taken to ensure the necessary settings are set for data capture. The renderer will then render as many subframes as required by current settings and schedule a frame to be captured by any active annotators and writers.

Parameters
  • rt_subframes – Specify the number of subframes to render. During subframe generation, the simulation is paused. This is often beneficial when large scene changes occur to reduce rendering artifacts or to allow materials to fully load. This setting is enabled for both RTX Real-Time and Path Tracing render modes. Values must be greater than 0.

  • pause_timeline – If True, pause timeline after step. Defaults to True.

  • delta_time – The amount of time that timeline advances for each step call. When delta_time == None, default timeline rate will be used. When delta_time == 0.0, timeline will not advance. When delta_time > 0.0, timeline will advance by the custom delta_time.

async omni.replicator.core.orchestrator.wait_until_complete_async() None

Wait until generation is complete

Blocks execution until synthetic data generation has completed.

Orchestrator info

omni.replicator.core.orchestrator.get_is_paused() bool

Return True if Replicator is Paused.

omni.replicator.core.orchestrator.get_is_started() bool

Return True if Replicator is Started.

omni.replicator.core.orchestrator.get_is_stopped() bool

Return True if Replicator is Stopped.

omni.replicator.core.orchestrator.get_sim_times_to_write() List

Get list of simulation times scheduled to be written

omni.replicator.core.orchestrator.get_status() Status

Return Replicator status

Other

omni.replicator.core.orchestrator.register_status_callback(callback: Callable) StatusCallback

Register a callback on orchestrator status changed.

Register a callback and return a StatusCallback object that automatically unregisters callback when destroyed.

Parameters

callback – Callback function that will be called whenever orchestrator status changes

Returns

StatusCallback object which will automatically unregister callback when destroyed

Example

>>> import omni.replicator.core as rep
>>> def my_callback(status):
...     print(f"Orchestrator Status: {status}")
>>> # register callback
>>> my_callback = rep.orchestrator.register_status_callback(my_callback)
>>> my_callback2 = rep.orchestrator.register_status_callback(my_callback)
>>> # unregister callback manually
>>> my_callback.unregister()
>>> # unregister callback automatically
>>> del(my_callback)
omni.replicator.core.orchestrator.set_capture_on_play(value: bool) None

Set Replicator to capture on timeline playing.

When capture on play is enabled, timeline operations (ie. Play, Stop, Pause) will trigger the corresponding Replicator commands.

Parameters

value (bool) – If True, Replicator will engage when timeline is playing to capture frames.

omni.replicator.core.orchestrator.set_minimum_next_rt_subframes(rt_subframes: int) None

Specify the minimum number of subframes to render

Specify the minimum number of subframes to render. During subframe generation, the simulation is paused. This is often beneficial when large scene changes occur to reduce rendering artifacts or to allow materials to fully load. This setting is enabled for both RTX Real-Time and Path Tracing render modes. Values must be greater than 0.

Parameters

rt_subframes – Minimum number of subframes to render for the next frame. Resets on every frame.

omni.replicator.core.orchestrator.set_next_rt_subframes(rt_subframes: int) None

Specify the number of subframes to render

Specify the number of subframes to render. During subframe generation, the simulation is paused. This is often beneficial when large scene changes occur to reduce rendering artifacts or to allow materials to fully load. This setting is enabled for both RTX Real-Time and Path Tracing render modes. Values must be greater than 0.

Parameters

rt_subframes – Number of subframes to render for the next frame. Resets on every frame.

exception omni.replicator.core.orchestrator.OrchestratorError(msg=None)

Base exception for errors raised by the orchestrator

Backends

Backend Registry

omni.replicator.core.backends.registry.get(name: str, init_params: Optional[dict] = None) BaseBackend

Get backend from registry

Parameters
  • name – Backend name

  • init_params – Dictionary of initialization parameters with which to initialize writer

Example
>>> import omni.replicator.core as rep
>>> class PassBackend(rep.backends.BaseBackend):
...     def __init__(self, param1):
...         pass
...     def write_blob(self, **kwargs):
...         pass
...     def read_blob(self, **kwargs):
...         pass
>>> rep.backends.register(PassBackend)
>>> backend = rep.backends.get("PassBackend", init_params={"param1": 1})
>>> backend.get_name()
'PassBackend'
omni.replicator.core.backends.registry.register(backend: BaseBackend) None

Register a backend.

Parameters

backend – Backend to register, must be derived from BaseBackend

Example

>>> import omni.replicator.core as rep
>>> class PassBackend(rep.backends.BaseBackend):
...     def __init__(self, **kwargs):
...         pass
...     def write_blob(self, **kwargs):
...         pass
...     def read_blob(self, **kwargs):
...         pass
>>> rep.backends.register(PassBackend)
omni.replicator.core.backends.registry.unregister(backend: Union[str, BaseBackend]) None

Unregister a backend.

Parameters

name – Name of backend to unregister

Example

>>> import omni.replicator.core as rep
>>> class PassBackend(rep.backends.BaseBackend):
...     def __init__(self, **kwargs):
...         pass
...     def write_blob(self, **kwargs):
...         pass
...     def read_blob(self, **kwargs):
...         pass
>>> rep.backends.register(PassBackend)
>>> rep.backends.unregister("PassBackend")
class omni.replicator.core.backends.BackendRegistry

Registry of backends

Backends define how to read/write blobs of bytes data.

classmethod register_backend(backend: BaseBackend) None

Register a backend.

Parameters

backend – Backend to register, must be derived from BaseBackend. The backend is registered under its class name.

Example

>>> import omni.replicator.core as rep
>>> class PassBackend(rep.backends.BaseBackend):
...     def __init__(self, **kwargs):
...         pass
...     def write_blob(self, **kwargs):
...         pass
...     def read_blob(self, **kwargs):
...         pass
>>> rep.backends.BackendRegistry.register_backend(PassBackend)
classmethod unregister_backend(backend: BaseBackend) None

Unregister a backend.

Parameters

name – Name of backend to unregister

Example

>>> import omni.replicator.core as rep
>>> class PassBackend(rep.backends.BaseBackend):
...     def __init__(self, **kwargs):
...         pass
...     def write_blob(self, **kwargs):
...         pass
...     def read_blob(self, **kwargs):
...         pass
>>> rep.backends.BackendRegistry.register_backend(PassBackend)
>>> rep.backends.BackendRegistry.unregister_backend("PassBackend")
classmethod get_registered_backends() List

Returns a list of registered backends.

Returns

List of the names of registered backends.

Example

>>> import omni.replicator.core as rep
>>> registered_backends = rep.backends.BackendRegistry.get_registered_backends()
classmethod get_backend(name: str, init_params: Optional[dict] = None) BaseBackend

Get backend from registry

Parameters
  • name – Backend name

  • init_params – Dictionary of initialization parameters with which to initialize writer

Example
>>> import omni.replicator.core as rep
>>> class PassBackend(rep.backends.BaseBackend):
...     def __init__(self, param1):
...         pass
...     def write_blob(self, **kwargs):
...         pass
...     def read_blob(self, **kwargs):
...         pass
>>> rep.backends.BackendRegistry.register_backend(PassBackend)
>>> backend = rep.backends.BackendRegistry.get_backend("PassBackend")
>>> backend.initialize(param1=1)
>>> backend.get_name()
'PassBackend'

IO Queue

omni.replicator.core.backends.io_queue.is_done_writing() bool

If the queue is empty, return True

omni.replicator.core.backends.io_queue.wait_until_done() None

Wait until data queue is fully processed

Blocks execution until is_done_writing() == True.

omni.replicator.core.backends.io_queue.set_max_queue_size(value: int) None

Set maximum queue size

On systems with more available memory, increasing the queue size can reduce instances where I/O bottlenecks data generation.

class omni.replicator.core.backends.sequential.Sequential(*tasks: List[Callable])

Setup a sequence of tasks. Used to defined a sequence tasks. Tasks may be defined as lambdas, functions or classes. Calling a Sequential instance returns a partial function that can be scheduled to run on background threads. This is often desirable to avoid I/O or post processing tasks from blocking the simulation thread.

Parameters

*tasks – List of functions representing tasks to be executed in sequence. Tasks must have compatible inputs/outputs to be sequenced together.

Note: Calling a Sequential instance returns a Python partial function.

Example 1:
>>> import omni.replicator.core.functional as F
>>> import numpy as np
>>> from functools import partial
>>> from omni.replicator.core import backends
>>> # Define function and class to go into a task sequence
>>> def pad(x, pad_value, pad_length):
...     return f"{x:{pad_value}>{pad_length}}"
>>> class add_prefix:
...     def __init__(self, prefix):
...         self.prefix = prefix
...     def __call__(self, x):
...         return f"{self.prefix}{x}"
>>> sequence_path = Sequential(
...     lambda x: x * 2,
...     partial(pad, pad_value=0, pad_length=5),
...     add_prefix("frame_"),
...     lambda x, ext="png": f"{x}.{ext}",
... )
>>> # Test sequence
>>> sequence_path(1)()
'frame_00002.png'
>>> # Setup data task sequence
>>> sequence_data = Sequential(
...     lambda x, factor=2: x * factor,
...     lambda x, offset=10: x + offset,
... )
>>> # Test sequence
>>> seq_partial = sequence_data(np.ones(1))
>>> type(seq_partial)
<class 'functools.partial'>
>>> seq_partial()
array([12.])
>>> # Setup Backend
>>> backend_abs = backends.BackendDispatch(output_dir="_out")
>>> test_frame_num = 5
>>> test_data = np.ones((100, 100, 4))
>>> backend_abs.schedule(F.write_image, path=sequence_path(test_frame_num), data=sequence_data(test_data))

For more complex operations, sequenced tasks can accept and return tuples or dictionaries to further parameterize downstream tasks. Note that sequenced funtions should return and ingest the same arguments to be compatible with each other.

Example 2:
>>> import omni.replicator.core.functional as F
>>> import numpy as np
>>> from omni.replicator.core import backends
>>> # Define functions to go into a task sequence
>>> def add_empty_suffix(path, data):
...     import os   # import goes here as it will go out of scope on execution
...     if data.sum() == 0:
...         path_og, ext = os.path.splitext(path)
...         path = f"{path_og}_empty{ext}"
...     return path, data
>>> def empty_data_message(path, data):
...     if data.sum() == 0:
...         print(f"Writing empty image of size {data.shape} to {path}")
...     return {"path": path, "data": data}
>>> sequence_write_image = backends.Sequential(
...     add_empty_suffix,
...     empty_data_message,
...     F.write_image,
... )
>>> # Test sequence
>>> sequence_write_image("path/to/image.png", np.zeros((10, 10, 3)))()
Writing empty image of size (10, 10, 3) to path/to/image_empty.png
>>> # Setup Backend
>>> backend_abs = backends.BackendDispatch(output_dir="_out")
>>> test_path = "exr_data.exr"
>>> test_data = np.zeros((10, 10, 3), dtype=np.float32)
>>> backend_abs.schedule(sequence_write_image, path=test_path, data=test_data)
execute(*args, backend_instance=None, **kwargs) Any

Executes sequence of tasks with specified parameters

Parameters
  • backend_instance – Optionally specify the backend to use. This parameter is automatically provided when called from a <backend>.schedule() call.

  • *args – Optional positional parameters.

  • **kwargs – Optional keyword parameters.

Functional

I/O

omni.replicator.core.functional.io_functions.write_image(path: str, data: ~typing.Union[~numpy.ndarray, ~warp.types.array, ~PIL.Image.Image], backend_instance: ~omni.replicator.core.scripts.backends.base.BaseBackend = <class 'omni.replicator.core.scripts.backends.disk.DiskBackend'>, **kwargs) None

Write image data to a specified path. Supported image extensions include: [jpeg, jpg, png, exr]

Parameters
  • path – Write path URI

  • data – Image data

  • backend_instance – Backend to use to write. Defaults to DiskBackend.

  • kwargs – Specify additional save parameters, typically specific to the image file type.

omni.replicator.core.functional.io_functions.write_jpeg(path: str, data: ~typing.Union[~numpy.ndarray, ~warp.types.array], backend_instance: ~omni.replicator.core.scripts.backends.base.BaseBackend = <class 'omni.replicator.core.scripts.backends.disk.DiskBackend'>, quality: int = 75, progressive: bool = False, optimize: bool = False, **kwargs) None

Write image data to JPEG.

Parameters
  • path – Write path URI

  • data – Data to write

  • backend_instance – Backend to use to write. Defaults to DiskBackend. Defaults to DiskBackend.

  • quality – The image quality, on a scale from 0 (worst) to 95 (best), or the string keep. The default is 75. Values above 95 should be avoided; 100 disables portions of the JPEG compression algorithm, and results in large files with hardly any gain in image quality. The value keep is only valid for JPEG files and will retain the original image quality level, subsampling, and qtables.

  • progressive – Indicates that this image should be stored as a progressive JPEG file.

  • optimize – Reduce file size, may be slower. Indicates that the encoder should make an extra pass over the image in order to select optimal encoder settings.

  • kwargs – Additional parameters may be specified and can be found within the PILLOW documentation: https://pillow.readthedocs.io/en/stable/handbook/image-file-formats.html#jpeg-saving

omni.replicator.core.functional.io_functions.write_png(path: str, data: ~typing.Union[~numpy.ndarray, ~warp.types.array], backend_instance: ~omni.replicator.core.scripts.backends.base.BaseBackend = <class 'omni.replicator.core.scripts.backends.disk.DiskBackend'>, compress_level: int = 3, **kwargs) None

Write image data to PNG.

Parameters
  • path – Write path URI

  • data – Data to write

  • backend_instance – Backend to use to write. Defaults to DiskBackend.

  • compress_level – Specifies ZLIB compression level. Compression is specified as a value between [0, 9] where 1 is fastest and 9 provides the best compression. A value of 0 provides no compression. Defaults to 3.

  • kwargs – Additional parameters may be specified and can be found within the PILLOW documentation: https://pillow.readthedocs.io/en/stable/handbook/image-file-formats.html#png-saving

omni.replicator.core.functional.io_functions.write_exr(path: str, data: ~typing.Union[~numpy.ndarray, ~warp.types.array], backend_instance: ~omni.replicator.core.scripts.backends.base.BaseBackend = <class 'omni.replicator.core.scripts.backends.disk.DiskBackend'>, exr_flag=None, **kwargs) None

Write data to EXR.

Parameters
  • path – Write path URI

  • data – Data to write

  • backend_instance – Backend to use to write. Defaults to DiskBackend.

  • FIF_EXR (exr_flag from) – imageio.plugins.freeimage.IO_FLAGS.EXR_DEFAULT: Save data as half with piz-based wavelet compression imageio.plugins.freeimage.IO_FLAGS.EXR_FLOAT: Save data as float instead of as half (not recommended) imageio.plugins.freeimage.IO_FLAGS.EXR_NONE: Save with no compression imageio.plugins.freeimage.IO_FLAGS.EXR_ZIP: Save with zlib compression, in blocks of 16 scan lines imageio.plugins.freeimage.IO_FLAGS.EXR_PIZ: Save with piz-based wavelet compression imageio.plugins.freeimage.IO_FLAGS.EXR_PXR24: Save with lossy 24-bit float compression imageio.plugins.freeimage.IO_FLAGS.EXR_B44: Save with lossy 44% float compression - goes to 22% when combined with EXR_LC imageio.plugins.freeimage.IO_FLAGS.EXR_LC: Save images with one luminance and two chroma channels, rather than as RGB (lossy compression)

omni.replicator.core.functional.io_functions.write_json(path, data, backend_instance=None, encoding='utf-8', errors='strict', **kwargs) None

Write json data to a specified path.

Parameters
  • path – Write path URI

  • data – Data to write

  • backend_instance – Backend to use to write. Defaults to DiskBackend.

  • encoding – This parameter specifies the encoding to be used. For a list of all encoding schemes, please visit: https://docs.python.org/3/library/codecs.html#standard-encodings

  • errors – This parameter specifies an error handling scheme when encoding the json string data. The default for errors is ‘strict’ which means that the encoding errors raise a UnicodeError. Other possible values are ‘ignore’, ‘replace’, ‘xmlcharrefreplace’, ‘backslashreplace’ and any othername registered via codecs.register_error().

  • **kwargs – Additional JSON encoding parameters may be supplied. See https://docs.python.org/3/library/json.html#json.dump for full list.

omni.replicator.core.functional.io_functions.write_pickle(path: str, data: ~typing.Union[~numpy.ndarray, ~warp.types.array], backend_instance: ~omni.replicator.core.scripts.backends.base.BaseBackend = <class 'omni.replicator.core.scripts.backends.disk.DiskBackend'>, **kwargs) None

Write pickle data to a specified path.

Parameters
omni.replicator.core.functional.io_functions.write_np(path: str, data: ~typing.Union[~numpy.ndarray, ~warp.types.array], backend_instance: ~omni.replicator.core.scripts.backends.base.BaseBackend = <class 'omni.replicator.core.scripts.backends.disk.DiskBackend'>, allow_pickle: bool = True, fix_imports: bool = True) None

Write numpy data to a specified path. Save parameters are detailed here: https://numpy.org/doc/stable/reference/generated/numpy.save.html

Parameters
  • path – Write path URI

  • data – Data to write

  • backend_instance – Backend to use to write. Defaults to DiskBackend.

  • allow_pickle – bool, optional Allow saving object arrays using Python pickles. Reasons for disallowing pickles include security (loading pickled data can execute arbitrary code) and portability (pickled objects may not be loadable on different Python installations, for example if the stored objects require libraries that are not available, and not all pickled data is compatible between Python 2 and Python 3). Default to True.

  • fix_imports – bool, optional Only useful in forcing objects in object arrays on Python 3 to be pickled in a Python 2 compatible way. If fix_imports is True, pickle will try to map the new Python 3 names to the old module names used in Python 2, so that the pickle data stream is readable with Python 2. Defaults to True

Default Backends

class omni.replicator.core.backends.BaseBackend

Backend abstract class

Backends define how to write and read data. Backends define a write_blob function that defines how to write bytes to a specified path and a read_blob function that defines how to read bytes from a path.

Note: While backends are most often used to write data, they can also be used to stream data or process data in some

other way.

abstract write_blob(path: str, data: bytes) None
abstract read_blob(path: str) bytes
classmethod get_name() str

Get backend name

schedule(fn: Callable, *args, **kwargs) None

Schedule a task to be executed asynchronously

Append a task to a data queue that will be executed by multithreaded workers at a later time. This is often desirable so as to avoid bottlenecking the simulation thread with I/O tasks.

Note: Because scheduled tasks are not executed immediately, special care must be given to manage the lifetime

of passed objects.

Parameters
  • fn – Task function to be performed asynchronously.bind

  • *args – Positional arguments to parametrize task.

  • **kwargs – Keyword arguments to parametrize task.

static is_done_writing() bool

Check if all scheduled tasks are complete

Returns

True if data queue is empty, False otherwise.

static wait_until_done() None

Wait until all scheduled tasks are complete

initialize(*args, **kwargs) None

Initialize the backend

class omni.replicator.core.backends.DiskBackend(output_dir: str, overwrite: bool = True)

Disk writing backend

Backend to write data to disk to a specified output directory.

Parameters
  • output_dir – Root output directory. If specified as a relative path, output will be relative to the path specified by the setting /omni/replicator/backends/disk/root_dir. If no root directory is specified, the root_dir is specified as <home_dir>/omni.replicator_out.

  • overwrite – If True, overwrite existing folder of the same output path. If False, a suffix in the format of _000N is added to the output directory name, where N is the next available number. Defaults to True.

read_blob(path) bytes

Return blob of bytes

Parameters

path – Path of file to read.

Returns

Bytes data.

resolve_path(path: str) str

Join path to output directory

Parameters

path – Partial path to resolve with output_dir

Returns

Full file path

static write_blob(path: str, data: bytes) None

Write blob to disk (uninitialized backend) Write blob to disk at specified path with uninitialized backend.

Parameters
  • path – Path to write data to. If specified as a relative path, output will be relative to the path specified by the setting /omni/replicator/backends/disk/root_dir. If no root directory is specified, the root_dir is specified as <home_dir>/omni.replicator_out.

  • data – Data to write to disk.

class omni.replicator.core.backends.S3Backend(bucket: str, key_prefix: str, region: Optional[str] = None, endpoint_url: Optional[str] = None, overwrite: bool = False)

Writer backend for saving generated data to an S3 bucket.

This backend requires that AWS credentials are set up in ~/.aws/credentials or the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables be defined. See https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html

Parameters
  • key_prefix – Prefix path within S3 bucket. When calling write_blob or read_blob, key_prefix is joined to the path argument of either methods to produce the full Key denoting the file location in the bucket.

  • bucket – S3 bucket name. Bucket must follow naming rules: https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html

  • region – Optionally specify S3 Region name (eg. us-east-2)

  • endpoint_url – Optionally specify S3 endpoint URL (eg. s3.us-east-2.amazonaws.com)

  • overwrite – If True, overwrite existing key_prefix path. If False, a suffix in the format of _000N is added to the key_prefix name, where N is the next available number. Defaults to False.

write_blob(path: str, data: bytes) None

Upload a file to the S3 bucket

Parameters
  • path – Filepath to upload

  • data – Data to upload

Returns

True if file was uploaded, else False

read_blob(path: str) bytes

Read file data from S3 bucket

Parameters

path – Path in bucket (S3 Key) to read data from.

Returns

Buffer of data

class omni.replicator.core.backends.BackendGroup(backends: List[BaseBackend])

Group multiple backends Group multiple backends to write data to multiple end points simultaneously. For example, you may want to stream data to a robot and also write the data to local disk as a backup or to create an offline dataset.

Parameters

backends – List of backends to group together.

schedule(fn: Callable, *args, **kwargs)

Schedule a task to be executed asynchronously

Append a task to a data queue that will be executed by multithreaded workers at a later time. This is often desirable so as to avoid bottlenecking the simulation thread with I/O tasks.

Note: Because scheduled tasks are not executed immediately, special care must be given to manage the lifetime

of passed objects.

Parameters
  • fn – Task function to be performed asynchronously.bind

  • *args – Positional arguments to parametrize task.

  • **kwargs – Keyword arguments to parametrize task.

read_blob(path: str) bytes

Read data Read blob will try to read from the given path with each backend and return the first successful payload.

Parameters

path – Data path to read from

write_blob(path: str, data: bytes) None

Schedule a write data blob task Legacy function. Schedule to write data blob with each dispatcher backend.

Parameters
  • path (str) – Path to write data to.

  • data – Data to write.

Replicator Utils

omni.replicator.core.utils.compute_aabb(bbox_cache: BBoxCache, prim: str, include_children: bool = True) array

Compute an AABB for a given prim_path, a combined AABB is computed if include_children is True

Parameters
  • bbox_cache (UsdGeom.BboxCache) – Existing Bounding box cache to use for computation

  • prim_path (UsdPrim) – prim to compute AABB for

  • include_children (bool, optional) – include children of specified prim in calculation. Defaults to True.

Returns

Bounding box for this prim, [min x, min y, min z, max x, max y, max z]

Return type

np.array

omni.replicator.core.utils.create_node(node_type_id: str, graph: Optional[Graph] = None, node_name=None, **kwargs)

Helper function to create a replicator node of type node_type_id

Parameters
  • node_type_id – Node type ID

  • graph – Optionally specify the graph onto which to create node

  • kwargs – Node attributes can optionally be set by specifying them as kwargs

omni.replicator.core.utils.find_prims(prim_paths: List[Union[str, Path]], mode: str = 'instances') List[Prim]

Find prims based on specified mode

Parameters
  • prim_paths – List of paths to prims in the current stage

  • mode

    Choose from one of the following modes:[‘prims’, ‘prototypes’, ‘materials’, ‘meshes’, ‘instances’], defaults to “instances”.

    • prims - Returns the prims corresponding to the paths in prim_paths.

    • prototypes - Returns the prims corresponding to the paths in prim_paths and parses point instancers to retreive its prototypes.

    • meshes - Traverse through the prims in prim_paths and return all meshes and geomsubsets.

    • materials - Traverse through the prims in prim_paths and return all bound materials.

Raises

ValueError – Invalid mode choice

Returns

List of Usd prim objects

omni.replicator.core.utils.get_files_group(folder_path: str, file_suffixes: Optional[List[str]] = None, ignore_case: bool = True, file_type: str = 'png') List[dict]

Retrieve all the files in a folder and group them based on the suffixes.

Parameters
  • folder_path – The folder where to search.

  • file_prefix – The prefix to filter the files by.

  • file_type – The texture file type.

Returns

<filepath>,}).

Return type

A list of tuples with each tuple of the format (<prefix>, {<suffix>

omni.replicator.core.utils.get_graph(graph_path: Optional[str] = None, is_hidden: bool = False)

Get or create the replicator graph

Retrieve a graph at specified path. If no graph exists, an execution (aka action) graph in the SIMULATION stage is created. If no graph_path is specified, use /Replicator/SDGPipeline.

Parameters
  • graph_path – Path to which graph is created.

  • is_hidden – If True, hide created graph in Stage panel. Ignored if graph already exists.

omni.replicator.core.utils.get_node_targets(node: Node, attribute: str, replicatorXform: bool = True) List[str]

Get node targets from prims bundle - DEPRECATED

This function provided a convenient way to retrieve targets from a node attribute and is now deprecated. Use get_non_xform_prims for similar functionality.

Parameters
  • node – Node from which to get targets

  • attribute – Attribute name

  • replicatorXform – If False and a target has the attribute replicatorXform, return its leaf children.

omni.replicator.core.utils.get_non_xform_prims(prim_paths: List[Union[str, Path]]) List[str]

Return non-xform prim paths

For each prim_path specified, return its child prim if it has the replicatorXform attribute.

Parameters

prim_paths – list of prim paths

omni.replicator.core.utils.get_prim_variant_values(prim_path: Union[str, Path], variant_name: str) List[str]
omni.replicator.core.utils.get_prims_from_paths(prim_paths: Union[Path, str]) List[Prim]

Convert prim paths to prim objects

Parameters

prim_paths – list of prim paths

omni.replicator.core.utils.get_replicator_graph_exists() bool
omni.replicator.core.utils.get_usd_files(path: str, recursive: bool = False, path_filter: Optional[str] = None) List[str]

Retrieve a list of USD files at the provided path

Parameters
  • path – Path or URL to search from.

  • recursive – If True, recusively search through sub-directories.

  • path_filter – Optional regex filter to refine the search.

omni.replicator.core.utils.read_prim_transform(prim_ref: Prim)

Return the prim’s local to world transform for current time

Parameters

prim_ref – Prim to compute transform for

omni.replicator.core.utils.send_og_event(event_name: str) None

Send an OmniGraph event that can be received by the omni.graph.action.OnCustomEvent node.

Sends an empty payload to signal the omni.graph.action.OnCustomEvent node to activate

Parameters

event_name – Name of the omnigraph event to send. The event name sent is always in the format omni.graph.action.{event_name}.

omni.replicator.core.utils.set_target_prims(node: Node, attribute: Attribute, target_prims: List[Union[ReplicatorItem, Node, str]])

Set node targets to attribute

This function provides a convenient way to set targets to a node attribute, and will be deprecated once multi-prim node attributes are supported.

Parameters
  • node – Node to which to set targets

  • attribute – Attribute name

  • target_prims – Targets to attach to attribute

Settings

omni.replicator.core.settings.carb_settings(setting: str, value: Union[List, float, ReplicatorItem]) ReplicatorItem

Set a specific carb setting

Carb settings are settings controlling anything from render parameters to specific extension behaviours. Any of these can be controlled and randomized through Replicator. Because settings can be introduced and removed by extensions, an providing an exhaustive list of available settings is not possible. Below you will find a subset of settings that may be useful for SDG workflows:

RealTime Render Settings:
Antialiasing/DLSS:
  • /rtx/post/aa/op (int): Specify the antialiasing or DLSS strategy to use. Select from None (0), TAA (1), FXAA (2), DLSS (3) and DLAA (4)

  • /rtx/post/scaling/staticRatio (float): TAA static ratio

  • /rtx/post/taa/samples (int): TAA samples

  • /rtx/post/taa/alpha (float): TAA alpha

  • /rtx/post/fxaa/qualitySubPix (float): FXAA sub-pixel quality

  • /rtx/post/fxaa/qualityEdgeThreshold (float): FXAA edge threshold

  • /rtx/post/fxaa/qualityEdgeThresholdMin (float): FXAA edge threshold minimum

  • /rtx/post/dlss/execMode (int): DLSS mode. Select from: Performance (0): Higher performance than balanced mode. Balanced (1): Balanced for optimized performance and image quality. Quality (2): Higher image quality than balanced mode.

  • /rtx/post/aa/sharpness (float): DLSS/DLAA sharpness. Higher values produce sharper results.

  • /rtx/post/aa/autoExposureMode (int): DLSS/DLAA auto exposure mode. Select from “Force self-evaluated” (0), “PostProcess AutoExposure” (1) and “Fixed” (2)

  • /rtx/post/aa/exposureMultiplier (float): DLSS/DLAA factor with which to multiply the selected exposure mode. Requires autoExposureMode=1

  • /rtx/post/aa/exposure (float): DLSS/DLAA exposure level. Requires autoExposureMode=2

Direct Lighting:
  • /rtx/newDenoiser/enabled (bool): Enables the new experimental denoiser.

  • /rtx/shadows/enabled (bool): When disabled, lights will not cast shadows.

  • /rtx/directLighting/sampledLighting/enabled (bool): Mode which favors performance with many lights (10 or more), at the cost of image quality.

  • /rtx/directLighting/sampledLighting/autoEnable (bool): Automatically enables Sampled Direct Lighting when the light count is greater than the Light Count Threshold.

  • /rtx/directLighting/sampledLighting/autoEnableLightCountThreshold (int): Light count threshold above which Sampled Direct Lighting is automatically enabled.

  • /rtx/shadows/sampleCount (int): Higher values increase the quality of shadows at the cost of performance.

  • /rtx/shadows/denoiser/quarterRes (bool): Reduces the shadow denoiser resolution to gain performance at the cost of quality.

  • /rtx/directLighting/domeLight/enabled (bool): Enables dome light contribution to diffuse BSDFs if Dome Light mode is IBL.

  • /rtx/directLighting/domeLight/enabledInReflections (bool): Enables Dome Light sampling in reflections at the cost of performance.

  • /rtx/directLighting/domeLight/sampleCount (int): Higher values increase dome light sampling quality at the cost of performance.

  • /rtx/directLighting/sampledLighting/samplesPerPixel (int): Higher values increase the direct lighting quality at the cost of performance.

  • /rtx/directLighting/sampledLighting/clampSamplesPerPixelToNumberOfLights (bool): When enabled, clamps the “Samples per Pixel” to the number of lights in the scene

  • /rtx/directLighting/sampledLighting/maxRayIntensity (float): Clamps the brightness of a sample, which helps reduce fireflies, but may result in some loss of energy.

  • /rtx/reflections/sampledLighting/clampSamplesPerPixelToNumberOfLights (bool): When enabled, clamps the “Reflections: Light Samples per Pixel” to the number of lights in the scene

  • /rtx/reflections/sampledLighting/samplesPerPixel (int): Higher values increase the reflections quality at the cost of performance.

  • /rtx/reflections/sampledLighting/maxRayIntensity (float): Clamps the brightness of a sample, which helps reduce fireflies, but may result in some loss of energy.

  • /rtx/lightspeed/ReLAX/fireflySuppressionType (int): Choose the filter type (None 0, Median 1, RCRS 2). Clamps overly bright pixels to a maximum value.

  • /rtx/lightspeed/ReLAX/historyClampingEnabled (bool): Reduces temporal lag.

  • /rtx/lightspeed/ReLAX/aTrousIterations (int): Number of times the frame is denoised.

  • /rtx/directLighting/sampledLighting/ris/meshLights (bool): Enables direct illumination sampling of geometry with emissive materials.

Indirect Diffuse Lighting:
  • /rtx/indirectDiffuse/enabled (bool): Enables indirect diffuse GI sampling.

  • /rtx/indirectDiffuse/fetchSampleCount (int): Number of samples made for indirect diffuse GI. Higher number gives better GI quality, but worse performance.

  • /rtx/indirectDiffuse/maxBounces (int): Number of bounces approximated with indirect diffuse GI.

  • /rtx/indirectDiffuse/scalingFactor (float): Multiplier for the indirect diffuse GI contribution.

  • /rtx/indirectDiffuse/denoiser/method (int): Select from NVRTD (0) or NRD:Reblur (1)

  • /rtx/indirectDiffuse/denoiser/kernelRadius (int): NVRTD controls the spread of local denoising area. Higher values results in smoother GI. Requires /rtx/indirectDiffuse/denoiser/method=0

  • /rtx/indirectDiffuse/denoiser/iterations (int): NVRTD number of denoising passes. Higher values results in smoother looking GI. Requires /rtx/indirectDiffuse/denoiser/method=0

  • /rtx/indirectDiffuse/denoiser/temporal/maxHistory (int): NVRTD Control of latency in GI updates. Higher values results in smoother looking GI. Requires /rtx/indirectDiffuse/denoiser/method=0

  • /rtx/lightspeed/NRD_ReblurDiffuse/maxAccumulatedFrameNum (int): NRD:Reblur maximum accumulated frame number. Requires /rtx/indirectDiffuse/denoiser/method=1

  • /rtx/lightspeed/NRD_ReblurDiffuse/maxFastAccumulatedFrameNum (int): NRD:Reblur maximum fast accumulated frame number. Requires /rtx/indirectDiffuse/denoiser/method=1

  • /rtx/lightspeed/NRD_ReblurDiffuse/planeDistanceSensitivity (float): NRD:Reblur plane distance sensitivity. Requires /rtx/indirectDiffuse/denoiser/method=1

  • /rtx/lightspeed/NRD_ReblurDiffuse/blurRadius (float): NRD:Reblur blur radius. Requires /rtx/indirectDiffuse/denoiser/method=1

  • /rtx/ambientOcclusion/enabled (bool): Enables ambient occlusion.

  • /rtx/ambientOcclusion/rayLength (float): The radius around the intersection point which the ambient occlusion affects.

  • /rtx/ambientOcclusion/minSamples (int): Minimum number of samples per frame for ambient occlusion sampling.

  • /rtx/ambientOcclusion/maxSamples (int): Maximum number of samples per frame for ambient occlusion sampling.

  • /rtx/ambientOcclusion/denoiserMode (int): Allows for increased AO denoising at the cost of more blurring. Select from None (0), Aggressive (1) and Simple (2).

  • /rtx/sceneDb/ambientLightColor (color3): Color of the global environment lighting.

  • /rtx/sceneDb/ambientLightIntensity (float): Brightness of the global environment lighting.

Reflections:
  • /rtx/reflections/maxRoughness (float): Roughness threshold for approximated reflections. Higher values result in better quality, at the cost of performance.

  • /rtx/reflections/maxReflectionBounces (int): Number of bounces for reflection rays.

  • /rtx/reflections/importantLightsOnly (bool): Process important lights only.

Translucency:
  • /rtx/translucency/maxRefractionBounces (int): Number of bounces for refraction rays.

  • /rtx/translucency/reflectAtAllBounce (bool): When enabled, reflection seen through refraction is rendered. When disabled, reflection is limited to first bounce only. More accurate, but worse performance

  • /rtx/translucency/reflectionThroughputThreshold (float): Threshold below which reflection paths due to fresnel are no longer traced. Lower values result in higher quality at the cost of performance.

  • /rtx/raytracing/fractionalCutoutOpacity (bool): Enables fractional cutout opacity values resulting in a translucency-like effect similar to alpha-blending.

  • /rtx/translucency/virtualDepth (bool): Improves DoF for translucent (refractive) objects, but can result in worse performance.

  • /rtx/translucency/virtualMotion (bool): Enables motion vectors for translucent (refractive) objects, which can improve temporal rendering such as denoising, but can result in worse performance.

  • /rtx/translucency/worldEps (float): Treshold below which image-based reprojection is used to compute refractions. Lower values result in higher quality at the cost performance.

  • /rtx/translucency/sampleRoughness (bool): Enables sampling roughness, such as for simulating frosted glass, but can result in worse performance.

Subsurface Scattering:
  • /rtx/raytracing/subsurface/maxSamplePerFrame (int): Max samples per frame for the infinitely-thick geometry SSS approximation.

  • /rtx/raytracing/subsurface/fireflyFiltering/enabled (bool): Enables firefly filtering for the subsurface scattering. The maximum filter intensity is determined by ‘/rtx/directLighting/sampledLighting/maxRayIntensity’.

  • /rtx/raytracing/subsurface/denoiser/enabled (bool): Enables denoising for the subsurface scattering.

  • /rtx/directLighting/sampledLighting/irradiance/denoiser/enabled (bool): Denoise the irradiance output from sampled lighting pass before it’s used, helps in complex lighting conditions or if there are large area lights which makes irradiance estimation difficult with low sampled lighting sample count.

  • /rtx/raytracing/subsurface/transmission/enabled (bool): Enables transmission of light through the medium, but requires additional samples and denoising.

  • /rtx/raytracing/subsurface/transmission/bsdfSampleCount (int): Transmission sample count per frame.

  • /rtx/raytracing/subsurface/transmission/perBsdfScatteringSampleCount (int): Transmission samples count per BSDF Sample. Samples per pixel per frame = BSDF Sample Count * Samples Per BSDF Sample.

  • /rtx/raytracing/subsurface/transmission/screenSpaceFallbackThresholdScale (float): Transmission threshold for screen-space fallback.

  • /rtx/raytracing/subsurface/transmission/halfResolutionBackfaceLighting (bool): Enables rendering transmission in half-resolution to improve performance at the expense of quality.

  • /rtx/raytracing/subsurface/transmission/ReSTIR/enabled (bool): Enables transmission sample guiding, which may help with complex lighting scenarios.

  • /rtx/raytracing/subsurface/transmission/denoiser/enabled (bool): Enables transmission denoising.

Caustics:
  • /rtx/raytracing/caustics/photonCountMultiplier (int): Factor multiplied by 1024 to compute the total number of photons to generate from each light.

  • /rtx/raytracing/caustics/photonMaxBounces (int): Maximum number of bounces to compute for each light/photon path.

  • /rtx/raytracing/caustics/positionPhi (float): Position Phi

  • /rtx/raytracing/caustics/normalPhi (float): Normal Phi

  • /rtx/raytracing/caustics/eawFilteringSteps (int): Number of iterations for the denoiser applied to the results of the caustics tracing pass.

Global Volumetric Effects:
  • /rtx/raytracing/inscattering/maxAccumulationFrames (int): Number of frames samples accumulate over temporally. High values reduce noise, but increase lighting update times.

  • /rtx/raytracing/inscattering/depthSlices (int): Number of layers in the voxel grid to be allocated. High values result in higher precision at the cost of memory and performance.

  • /rtx/raytracing/inscattering/pixelRatio (int): Higher values result in higher fidelity volumetrics at the cost of performance and memory (depending on the # of depth slices).

  • /rtx/raytracing/inscattering/sliceDistributionExponent (float): Controls the number (and relative thickness) of the depth slices.

  • /rtx/raytracing/inscattering/inscatterUpsample (int): Inscatter Upsample

  • /rtx/raytracing/inscattering/blurSigma (float): Sigma parameter for the Gaussian filter used to spatially blur the voxel grid. 1 = no blur, higher values blur further.

  • /rtx/raytracing/inscattering/ditheringScale (float): The scale of the noise dithering. Used to reduce banding from quantization on smooth gradients.

  • /rtx/raytracing/inscattering/spatialJitterScale (float): Spatial jitter scale. 1 = the entire voxel’s volume.

  • /rtx/raytracing/inscattering/temporalJitterScale (float): Temporal jitter scale

  • /rtx/raytracing/inscattering/enableFlowSampling (bool): Enable flow sampling

  • /rtx/raytracing/inscattering/minFlowLayer (int): Minimum flow layer

  • /rtx/raytracing/inscattering/maxFlowLayer (int): Maximum flow layer

  • /rtx/raytracing/inscattering/flowDensityScale (float): Flow density scale

  • /rtx/raytracing/inscattering/flowDensityOffset (float): Flow density offset

PathTracing Render Settings:
Pathtracing:
  • /rtx/pathtracing/spp (int): Total number of samples for each rendered pixel, per frame.

  • /rtx/pathtracing/totalSpp (int): Maximum number of samples to accumulate per pixel. When this count is reached the rendering stops until a scene or setting change is detected, restarting the rendering process. Set to 0 to remove this limit.

  • /rtx/pathtracing/adaptiveSampling/enabled (bool): When enabled, noise values are computed for each pixel, and upon threshold level eached, the pixel is no longer sampled

  • /rtx/pathtracing/adaptiveSampling/targetError (float): The noise value treshold after which the pixel would no longer be sampled.

  • /rtx/pathtracing/maxBounces (int): Maximum number of ray bounces for any ray type. Higher values give more accurate results, but worse performance.

  • /rtx/pathtracing/maxSpecularAndTransmissionBounces (int): Maximum number of ray bounces for specular and trasnimission.

  • /rtx/pathtracing/maxVolumeBounces (int): Maximum number of ray bounces for SSS.

  • /rtx/pathtracing/ptfog/maxBounces (int): Maximum number of bounces for volume scattering within a fog/sky volume.

  • /rtx/pathtracing/fractionalCutoutOpacity (bool): If enabled, fractional cutout opacity values are treated as a measure of surface ‘presence’ resulting in a translucency effect similar to alpha-blending. Path-traced mode uses stochastic sampling based on these values to determine whether a surface hit is valid or should be skipped.

  • /rtx/resetPtAccumOnAnimTimeChange (bool): If enabled, rendering is restarted every time the MDL animation time changes.

Anti-Aliasing:
  • /rtx/pathtracing/aa/op (int): Sampling pattern used for Anti-Aliasing. Select between Box (0), Triangle (1), Gaussian (2) and Uniform (3).

  • /rtx/pathtracing/aa/filterRadius (float): Sampling footprint radius, in pixels, when generating samples with the selected antialiasing sample pattern.

Firefly Filtering:
  • /rtx/pathtracing/fireflyFilter/maxIntensityPerSample (float): Clamps the maximium ray intensity for glossy bounces. Can help prevent fireflies, but may result in energy loss.

  • /rtx/pathtracing/fireflyFilter/maxIntensityPerSampleDiffuse (float): Clamps the maximium ray intensity for diffuse bounces. Can help prevent fireflies, but may result in energy loss.

Denoising:
  • /rtx/pathtracing/optixDenoiser/blendFactor (float): A blend factor indicating how much to blend the denoised image with the original non-denoised image. 0 shows only the denoised image, 1.0 shows the image with no denoising applied.

  • /rtx/pathtracing/optixDenoiser/AOV (bool): If enabled, the OptiX Denoiser will also denoise the AOVs.

Non-Uniform Volumes:
  • /rtx/pathtracing/ptvol/transmittanceMethod (int): Choose between Biased Ray Marching (0) or Ratio Tracking (1). Biased ray marching is the ideal option in all cases.

  • /rtx/pathtracing/ptvol/maxCollisionCount (int): Maximum delta tracking steps between bounces. Increase to more than 32 for highly scattering volumes like clouds.

  • /rtx/pathtracing/ptvol/maxLightCollisionCount (int): Maximum ratio tracking delta steps for shadow rays. Increase to more than 32 for highly scattering volumes like clouds.

  • /rtx/pathtracing/ptvol/maxBounces (int): Maximum number of bounces in non-uniform volumes.

Global Volumetric Effects
  • /rtx/pathtracing/ptvol/raySky (bool): Enables an additional medium of Rayleigh-scattering particles to simulate a physically-based sky.

  • /rtx/pathtracing/ptvol/raySkyScale (float): Scales the size of the Rayleigh sky.

  • /rtx/pathtracing/ptvol/raySkyDomelight (bool): If a domelight is rendered for the sky color, the Rayleight Atmosphere is applied to the foreground while the background sky color is left unaffected.

PostProcess Render Settings:
Tonemapping:
  • /rtx/post/tonemap/maxWhiteLuminance (float): Maximum HDR luminance value that will map to 1.0 post tonemap.

  • /rtx/post/tonemap/whiteScale (float): Maximum white value that will map to 1.0 post tonemap.

  • /rtx/post/tonemap/enableSrgbToGamma (bool): Available with Linear/Reinhard/Modified Reinhard/HejiHableAlu/HableUc2 Tone Mapping.

  • /rtx/post/tonemap/cm2Factor (float): Use this factor to adjust for scene units being different from centimeters.

  • /rtx/post/tonemap/filmIso (float): Simulates the effect on exposure of a camera’s ISO setting.

  • /rtx/post/tonemap/cameraShutter (float): Simulates the effect on exposure of a camera’s shutter open time.

  • /rtx/post/tonemap/fNumber (float): Simulates the effect on exposure of a camera’s f-stop aperture.

  • /rtx/post/tonemap/whitepoint (color3): A color mapped to white on the output.

  • /rtx/post/tonemap/colorMode (int): Tone Mapping Color Space selector. Select from sRGBLinear (0) or ACEScg (1)

  • /rtx/post/tonemap/wrapValue (float): Offset

  • /rtx/post/tonemap/dither (float): Removes banding artifacts in final images.

Auto Exposure:
  • /rtx/post/histogram/filterType (int): Select a method to filter the histogram. Options are Median (0) and Average (1).

  • /rtx/post/histogram/tau (float): How fast automatic exposure compensation adapts to changes in overall light intensity.

  • /rtx/post/histogram/whiteScale (float): higher values result in darker images.

  • /rtx/post/histogram/useExposureClamping (bool): Clamps the exposure to a range within a specified minimum and maximum Exposure Value.

  • /rtx/post/histogram/minEV (float): Clamps the exposure to a range within a specified minimum and maximum Exposure Value.

  • /rtx/post/histogram/maxEV (float): Clamps the exposure to a range within a specified minimum and maximum Exposure Value.

Color Correction:
  • /rtx/post/colorcorr/saturation (color3): Higher values increase color saturation while lowering desaturates.

  • /rtx/post/colorcorr/contrast (color3): Higher values increase the contrast of darks/lights and colors.

  • /rtx/post/colorcorr/gamma (color3): Gamma value in inverse gamma curve applied before output.

  • /rtx/post/colorcorr/gain (color3): A factor applied to the color values.

  • /rtx/post/colorcorr/offset (color3): An offset applied to the color values.

Color Grading:
  • /rtx/post/colorgrad/blackpoint (color3): Defines the Black Point value.

  • /rtx/post/colorgrad/whitepoint (color3): Defines the White Point value.

  • /rtx/post/colorgrad/contrast (color3): Higher values increase the contrast of darks/lights and colors.

  • /rtx/post/colorgrad/lift (color3): Color is multiplied by (Lift - Gain) and later Lift is added back.

  • /rtx/post/colorgrad/gain (color3): Color is multiplied by (Lift - Gain) and later Lift is added back.

  • /rtx/post/colorgrad/multiply (color3): A factor applied to the color values.

  • /rtx/post/colorgrad/offset (color3): Color offset: an offset applied to the color values.

  • /rtx/post/colorgrad/gamma (color3): Gamma value in inverse gamma curve applied before output.

Chromatic Aberration:
  • /rtx/post/chromaticAberration/strengthR (float): The strength of the distortion applied on the Red channel.

  • /rtx/post/chromaticAberration/strengthG (float): The strength of the distortion applied on the Green channel.

  • /rtx/post/chromaticAberration/strengthB (float): The strength of the distortion applied on the Blue channel.

  • /rtx/post/chromaticAberration/modeR (int): Selects between Radial (0) and Barrel (1) distortion for the Red channel.

  • /rtx/post/chromaticAberration/modeG (int): Selects between Radial (0) and Barrel (1) distortion for the Green channel.

  • /rtx/post/chromaticAberration/modeB (int): Selects between Radial (0) and Barrel (1) distortion for the Blue channel.

  • /rtx/post/chromaticAberration/enableLanczos (bool): Use a Lanczos sampler when sampling the input image being distorted.

Depth of Field:
  • /rtx/post/dof/enabled (bool): camera parameters affecting Depth of Field are ignored.

  • /rtx/post/dof/subjectDistance (float): Objects at this distance from the camera will be in focus.

  • /rtx/post/dof/focalLength (float): The focal length of the lens (in mm). The focal length divided by the f-stop is the aperture diameter.

  • /rtx/post/dof/fNumber (float): F-stop (aperture) of the lens. Lower f-stop numbers decrease the distance range from the Subject Distance where objects remain in focus.

  • /rtx/post/dof/anisotropy (float): Anisotropy of the lens. A value of -0.5 simulates the depth of field of an anamorphic lens.

Motion Blur (RealTime render mode):
  • /rtx/post/motionblur/maxBlurDiameterFraction (float): The fraction of the largest screen dimension to use as the maximum motion blur diameter.

  • /rtx/post/motionblur/exposureFraction (float): Exposure time fraction in frames (1.0 = one frame duration) to sample.

  • /rtx/post/motionblur/numSamples (int): Number of samples to use in the filter. A higher number improves quality at the cost of performance.

FFT Bloom:
  • /rtx/post/lensFlares/flareScale (float): Overall intensity of the bloom effect.

  • /rtx/post/lensFlares/cutoffPoint (double3): A cutoff color value to tune the radiance range for which Bloom will have any effect.

  • /rtx/post/lensFlares/cutoffFuzziness (float): a smooth transition between 0 and the original values is used.

  • /rtx/post/lensFlares/alphaExposureScale (float): Alpha channel intensity of the bloom effect.

  • /rtx/post/lensFlares/energyConstrainingBlend (bool): Constrains the total light energy generated by bloom.

  • /rtx/post/lensFlares/physicalSettings (bool): Choose between a Physical or Non-Physical bloom model.

  • /rtx/post/lensFlares/blades (int): The number of physical blades of a simulated camera diaphragm causing the bloom effect.

  • /rtx/post/lensFlares/apertureRotation (float): Rotation of the camera diaphragm.

  • /rtx/post/lensFlares/sensorDiagonal (float): Diagonal of the simulated sensor.

  • /rtx/post/lensFlares/sensorAspectRatio (float): results in the bloom effect stretching in one direction.

  • /rtx/post/lensFlares/fNumber (float): Increases/Decreases the sharpness of the bloom effect.

  • /rtx/post/lensFlares/focalLength (float): Focal length of the lens modeled to simulate the bloom effect.

  • /rtx/post/lensFlares/haloFlareRadius (double3): Controls the size of each RGB component of the halo flare effect.

  • /rtx/post/lensFlares/haloFlareFalloff (double3): Controls the falloff of each RGB component of the halo flare effect.

  • /rtx/post/lensFlares/haloFlareWeight (float): Controls the intensity of the halo flare effect.

  • /rtx/post/lensFlares/anisoFlareFalloffY (double3): Controls the falloff of each RGB component of the anistropic flare effect in the X direction.

  • /rtx/post/lensFlares/anisoFlareFalloffX (double3): Controls the falloff of each RGB component of the anistropic flare effect in the Y direction.

  • /rtx/post/lensFlares/anisoFlareWeight (float): Control the intensity of the anisotropic flare effect.

  • /rtx/post/lensFlares/isotropicFlareFalloff (double3): Controls the falloff of each RGB component of the isotropic flare effect.

  • /rtx/post/lensFlares/isotropicFlareWeight (float): Control the intensity of the isotropic flare effect.

TV Noise Grain:
  • /rtx/post/tvNoise/grainSize (float): The size of the film grains.

  • /rtx/post/tvNoise/enableScanlines (bool): Emulates a Scanline Distortion typical of old televisions.

  • /rtx/post/tvNoise/scanlineSpread (float): How wide the Scanline distortion will be.

  • /rtx/post/tvNoise/enableScrollBug (bool): Emulates sliding typical on old televisions.

  • /rtx/post/tvNoise/enableVignetting (bool): Blurred darkening around the screen edges.

  • /rtx/post/tvNoise/vignettingSize (float): Controls the size of vignette region.

  • /rtx/post/tvNoise/vignettingStrength (float): Controls the intensity of the vignette.

  • /rtx/post/tvNoise/enableVignettingFlickering (bool): Enables a slight flicker effect on the vignette.

  • /rtx/post/tvNoise/enableGhostFlickering (bool): Introduces a blurred flicker to help emulate an old television.

  • /rtx/post/tvNoise/enableWaveDistortion (bool): Introduces a Random Wave Flicker to emulate an old television.

  • /rtx/post/tvNoise/enableVerticalLines (bool): Introduces random vertical lines to emulate an old television.

  • /rtx/post/tvNoise/enableRandomSplotches (bool): Introduces random splotches typical of old dirty television.

  • /rtx/post/tvNoise/enableFilmGrain (bool): Enables a film grain effect to emulate the graininess in high speed (ISO) film.

  • /rtx/post/tvNoise/grainAmount (float): The intensity of the film grain effect.

  • /rtx/post/tvNoise/colorAmount (float): The amount of color offset each grain will be allowed to use.

  • /rtx/post/tvNoise/lumAmount (float): The amount of offset in luminance each grain will be allowed to use.

  • /rtx/post/tvNoise/grainSize (float): The size of the film grains.

Reshade:
  • /rtx/reshade/presetFilePath (string): The path to a preset.init file containing the Reshade preset to use.

  • /rtx/reshade/effectSearchDirPath (string): The path to a directory containing the Reshade files that the preset can reference.

  • /rtx/reshade/textureSearchDirPath (string): The path to a directory containing the Reshade texture files that the preset can reference.

Replicator Settings:
  • /omni/replicator/captureMotionBlur (bool): Capture a motion blur effect. In RealTime render mode, this is equivalent to enabling /rtx/post/motionblur/enabled. In Pathtrace mode, a timestep is split into N subframes where N is equal to /rtx/pathtracing/totalSpp.

  • /omni/replicator/pathTracedMotionBlurSubSamples (float): Number of sub samples to render if in PathTracing render mode and motion blur is enabled.

  • /omni/replicator/totalRenderProductPixels (int): Number of total pixels created when calling rep.create.render_product. Used to calculate maxSamplePerLaunch inside orchestrator.py.

Parameters
  • setting – Carb setting to modify.

  • value – Value to set the carb setting to.

Example

>>> import omni.replicator.core as rep
>>> # Randomize film grain post process effect
>>> tv_noise = rep.settings.carb_settings("/rtx/post/tvNoise/enabled", True)
>>> with rep.trigger.on_frame():
...     flicker = rep.settings.carb_settings(
...         "/rtx/post/tvNoise/enableGhostFlickering",
...         rep.distribution.choice([True, False]),
...     )
...     grain_size = rep.settings.carb_settings(
...         "/rtx/post/tvNoise/grainSize",
...         rep.distribution.uniform(1.5, 5.0),
...     )
omni.replicator.core.settings.set_render_pathtraced(samples_per_pixel: Union[int, ReplicatorItem] = 64) None

Setup PathTraced render mode

Parameters

samples_per_pixel – Select the total number of samples to sample for each pixel per frame. Valid range [1, inf]

Example

>>> import omni.replicator.core as rep
>>> rep.settings.set_render_pathtraced(samples_per_pixel=512)
omni.replicator.core.settings.set_render_rtx_realtime(antialiasing: Union[str, ReplicatorItem] = 'FXAA') None

Setup RTX Realtime render mode

Parameters

antialiasing – Antialiasing algorithm. Select from [Off, FXAA, DLSS, TAA, DLAA]. FXAA is recommended for non-sequential data generation as it does not accumulate samples across frames.

Example

>>> import omni.replicator.core as rep
>>> rep.settings.set_render_rtx_realtime(antialiasing="DLSS")
omni.replicator.core.settings.set_stage_meters_per_unit(meters_per_unit: float) None

Set up the meters per unit for the stage.

Parameters

meters_per_unit – Set the stage meters per unit value.

Example

>>> import omni.replicator.core as rep
>>> rep.settings.set_stage_meters_per_unit(1.0)
omni.replicator.core.settings.set_stage_up_axis(up_axis: str) None

Set the up axis of the stage

Parameters

up_axis – Specify stage up axis. Select from [Y, Z]

Example

>>> import omni.replicator.core as rep
>>> rep.settings.set_stage_up_axis("Z")