Data Adapter Deduplication

The data adapter is a Kit extension that performs scene optimization. This allows complex
scenes to be converted into more lightweight representations which can be displayed and
evaluated more quickly.

The adapter provides a number of optimization tools which can be used individually or in
combination to optimize a scene. Examples are merging meshes, deleting specific objects from
the scene, and deduplicating geometry.

This document discusses the technical details of the deduplicate geometry feature.

Motivation

The largest chunk of data within a USD file is occupied by geometry. Within the context of
manufacturing datasets particularly, it is staggering how many obvious duplicates there are,
although the same problem can occur in data from many industries and content creation tools.
Thus, there is a lot to gain by replacing duplicate geometry with instances. Reducing the amount
of geometric data in a USD file implies:

Less data to be fetched from drive

Less data to be sent over the network

Less data to be uploaded to the GPU

Less data occupying GPU Memory

To put it short, when looking at a USD file of a factory scene, it may be good if the geometric
data of a specific screw, or bolt, that may exist several hundred times is stored exactly once.

This document is split into two parts, how to find duplicates and how to deal with those
duplicates once we’ve found them.

Finding Duplicates

Deduplication In an Ideal World

For now let’'s assume that all duplicate meshes are in fact bitwise duplicates. This applies to the
connectivity data of the mesh as well as attributes such as points, normals and uv data. For this
scenario it is rather straightforward to devise a linear algorithm that detects all bitwise duplicates
in a USD file.



Assuming collision free hashing:

e Keep an unorderd_map
o from size t — the hash value
o to alist of UsdGeomMesh — the duplicates

e For every UsdGeomMesh:
o Compute a hash value for the UsdGeomMesh using the entire data structure.
o Add the UsdGeomMesh to the list of duplicates associated with the computed
value.

In order to account for hash collisions one just stores the pair of the hash value and the first
UsdGeomMesh that established that hash value. That is, whenever a potential duplicate is
found via hashing, the duplicate is verified using a bitwise comparison with the first
UsdGeomMesh that established that hash value.

In fact this algorithm is essentially implemented in the RTX renderer
in Create, which can potentially save a lot of memory on the GPU.
The screen shot shows the RTX statistics on a rather large scene
with about 156K meshes, which boils down to only 32K meshes after
deduplication on RTX.



https://graphics.pixar.com/usd/dev/api/class_usd_geom_mesh.html#ac9b05fbc0b1f2315a688a3c044fa7158
https://graphics.pixar.com/usd/dev/api/class_usd_geom_mesh.html#ac9b05fbc0b1f2315a688a3c044fa7158
https://graphics.pixar.com/usd/dev/api/class_usd_geom_mesh.html#ac9b05fbc0b1f2315a688a3c044fa7158
https://graphics.pixar.com/usd/dev/api/class_usd_geom_mesh.html#ac9b05fbc0b1f2315a688a3c044fa7158
https://graphics.pixar.com/usd/dev/api/class_usd_geom_mesh.html#ac9b05fbc0b1f2315a688a3c044fa7158
https://graphics.pixar.com/usd/dev/api/class_usd_geom_mesh.html#ac9b05fbc0b1f2315a688a3c044fa7158

Deduplication in the Wild

Deep Transforms

Unfortunately this is not an ideal world and this certainly holds for the current generation of
import/export tools. Specifically, the transforms that are supposed to just
place an object in the scene are in fact applied to the points (as well as
normals) of a mesh. We call these deep transforms’.

First the bad news:

e We don’t know the transforms that have been applied.

e The rounding errors that occur during a deep transform deform
the object slightly.
Hashing, as applied by RTX, doesn't work anymore (see below).
Applying pairwise shape matching is not an option due to the
complexity of the algorithms and most importantly due to the
quadratic nature of the pairwise comparison.

Hashing the Connectivity

The good news is that while deep transforms change the coordinates of

points (and normals), they do not change the order in which the points are stored, nor do they
alter the connectivity information of a mesh, that is, the faceVertexCounts as well as the
faceVertexindices usually remain unchanged. And so long as we consider real world scenes in
the context of manufacturing, hashing just the connectivity data is sufficient to keep the linear
nature of the basic algorithm discussed above.

Duplicates up to Deep Transforms

Assuming that we have already detected and verified that two meshes indeed have identical
connectivity data, we are left with the task of coming up with a linear transform that maps one
mesh onto the other. If we’d known the deep two transforms Tland TZ, this would be easy, since:

T'M =M =T ""*M
1 1 2 2
Which is equivalent to:
TT 'M =M
21 1 2

However, as already stated, we neither know M, T1’ nor TZ. But, if we are able to come up with

transforms T’l, T'2 such that

' This is an analogy to shallow and deep copies, in the context of shared pointers.



we can still map M1 onto M2 via

Canonical Form

We call the mesh M' the canonical form of M. However, it should be noted that we have some
freedom in how we choose M', and in fact we've tried several strategies, though they all
leverage the same observation, namely, that the order in which the points of a mesh are given is
not changed by a deep transform. And so the principal idea is to simply take the first 4 linear
independent points of Mland define M' as the mesh in which the first point is mapped to the

origin and the other three are mapped onto the three unit vectors of the three main axes, which
then allows us to define T'1 as well as its inverse. By doing the same with M,, we can compute

the transform that should map Mlonto M, in case they are indeed duplicates.

Dealing with Numerical Instability

We can not simply take the first 4 points as those 4 points may only span a linear subspace.
Moreover, we should also be careful to use a set of sufficiently linear independent vectors to
obtain a numerically stable transform. While we can simply define a threshold for which we
consider those vectors to be sufficiently linear independent, taking the first 4 such points often
lets us compute a rather bad transform, namely the first that just barely surpasses the chosen
threshold.

An example to keep in mind here is a highly tessellated sphere with the first points all being in
the same area, which implies that they are barely linear independent. So in case this first set of
points does not yet surpass our threshold we would continue our search in that area until we
finally get out of that “bad zone”. However, while that would be a “sufficiently linear independent
set”, it would most likely be the one of the worst combinations we can choose.

Pseudo Random Selection

The crucial observation is that we don’t need to select the first 4 points so long as we choose
the same points for both meshes. Thus we apply a pseudo random shuffle to the points of each
mesh (using the same seed) and then choose the first 4 sufficiently linear independent points
according to that new order. And while we change the canonical form, we still send both meshes
to the same one. Though with the advantage that the chosen set of points is well distributed
over the mesh and is therefore most likely to yield a more stable transform than the one
generated via the basic strategy.

This approach supports even non-uniform scaling as well as shearing.



Pseudo Maximizing Selection

Another strategy is to select a set of points using a heuristic that produces the most stable
transform that can be generated from the point set that the mesh provides. Starting from a
reference point (can be the first point or the centroid):

e The first pass over the point set selects the longest diff vector from the reference point

e The second pass selects the vector that is most perpendicular to the first.

e The third pass select the vector that generates the largest determinant (fabs)
Obviously, this is a greedy approach and will not generate the best triple of spanning vectors,
but it will certainly generate a pretty good one.

However, the main problem with the approach described above are rounding errors that may
have already occurred during the initial application of the deep transform. The issue is that for
symmetric objects such as a cube there are in fact several vectors that would establish the
maximum, which means that in the presence of rounding errors their selection would be
essentially random. To prevent that, we give a slight preference to the vector that we found first,
and only select a new one in case it is better by some relative threshold.

Due to the way we select the maximal vector, this approach does not support non-uniform
scaling as well as shearing in all cases as the change of the metric prevents us from selecting
the same vectors. However, since essentially all deep transforms that occur in the context of
manufacturing are rigid transforms, this strategy performed slightly better as it generates stable
transforms more reliably.

Handling Duplicates in USD

Once we have identified meshes that are duplicates (based on the criteria established) the next
challenge is how to express those duplicates in USD so that we achieve the desired
optimizations outlined in our motivation.

In all of the strategies that we use there is a common pattern. For each set of duplicate meshes
nominate one to act as the “prototype”, calculate the transformations needed to take the
prototype and match it to the worldspace result of each of the other duplicates, then express
that in USD.

Copying Geometry Attributes

The simplest approach is to take the geometry information of the prototype (points, normals,
extents) and copy them into the corresponding attributes of the duplicate, while also adding a
local transform to the local transform stack of the duplicate to balance out the changes.

Thus, if M1 is the prototype and M2 is the duplicate, we replace M2 with T'ZT'l_lMl.



To summarize, this manifests in USD as;
- Opinions on the values of points, normals, extents.
- An additional xformOp in the xformOpStack.

Because we are not changing the size or ordering of points we are able to retain primvars and
other point based array properties.

By doing this we make the duplicates trivial to identify as they then have identical geometric
values. Specifically via hashing, that is, the RTX internal deduplication logic identifies these
duplicates, reducing GPU memory consumption.

Note that we can apply this change blindly, once a duplicate has been identified. That is, we do
not have to take into account any further properties of the prims, such as primvars,
UsdGeomSubset etc.

Duplicates via USD Composition

To reduce the number of times that duplicate data is expressed on disk and in the scene
description we need to take advantage of the composition system in USD. Rather than setting
identical values on all the duplicate meshes we use composition arcs to express the values in
one place and reuse that data across the stage.

Choice of Composition Arcs

Although we could employ Inherits, References, Specializes, or Payloads to compose the prims
we have chosen to focus on References in our implementation.

Our reasoning being;

e Inherits and Specializes are not commonly understood arcs.

e References and Payloads are somewhat interchangeable, with Payloads allowing users
to defer loading of the data. Because we are placing these composition arcs near the
leaves of the hierarchy (where the Mesh prims live) it is unlikely that users could
meaningfully manage their loaded state.

Scene Graph Instancing aka Instanceable

In order to reduce the redundant prim count for duplicate geometry (both in the stage and the
renderer) we need to enable Scene Graph Instancing. This is done by setting the “instanceable”
metadatum to “True”.

Scene graph instancing has a few limitations;
1. Child prims must come from composition arcs alone.
2. The children of the instanceable Prim are the items that will become instance proxies.


https://graphics.pixar.com/usd/dev/api/class_usd_geom_subset.html#a6973626deb3d11d798b23462e1121f5e

This means that we cannot instance geometry itself to reduce duplication, we must instance the
parent Prim of the geometry. We must also create composition arcs that provide the full
description of the geometric children.

Added Complexity of Composition

Changing the composition structure of an existing USD stage poses a range of challenges. We
have likely not predicted all the cases where “Deduplicate Geometry” will modify the scene
state. If cases are found please report them as we strive for a robust solution to this complex
problem.

After meshes with duplicate topology have been identified, we perform subsequent comparisons
to ensure all other properties on the Prim and its child Prims match those of duplicates.

The exception being “inheritable” properties such a visibility, purpose, transformation, constant
primvars and material bindings. These can remain on the Prim (that will become the Parent) and
will still inherit to the instance proxies.

This reduces the number of duplicates that we identify but allows us to reference the source
prim without having to then apply additional opinions on to it.



